China Headquarters

Address: 3/F, Block 2, Nanyou Tianan Industrial Park, Nanshan District Shenzhen, China Website: http://www.leadshine.com

Sales Hot Line:

Tel: 86-755-2643 4369 (for All)

86-755-2641-7674 (for Asia, Australia, Africa region) 86-755-2640-9254 (for Europe, America region)

Fax: 86-755-2640-2718 Email: sales@leadshine.com

Technical Support:

Tel: 86 755-2641-8447 and 86-755-2647-1129

Fax: 86-755-2640-2718

Email: tech@leadshine.com and vic@leadshine.com

Leadshine America, Inc

Address: 25 Mauchly, Suite 318, Irvine, CA 92618, USA

Tel: 1-949-608-7270 Fax: 1-949-608-7298

Website: http://www.leadshineUSA.com

Email: usa_sales@leadshine.com and cli@leadshine.com

Leadshine Hong Kong

Address: Rm 3, 9/F, Block E, Wah Lok Industrial Center,31-41 Shan Mei St., Fo Tan, Shatin, Hong Kong

Tel: 852-2952-9114 Fax: 852-2952-9395

Email: hk_sales@leadshine.com

Leading Technology Shining Value

Motion Control Products 2011 - 2012

- Stepper Motors & Drives
- Hybrid Servos
- Servo Motors & Drives
- **Motion Controllers**
- Power Supplies

Company Overview

Founded in 1997, Leadshine Motion Technology Ltd. specializes in developing, manufacturing, and distributing high-quality cost-effective motion control products. Its products include motion controllers, stepper drives and motors, hybrid servos, DC servo products, AC servo products, and power supplies. Leadshine serves various industrial and OEM customers in Asia, Europe, North/South America, Africa and Australia.

Leadshine is one of the LARGEST manufacturers of motion control products around the world. Led by an MIT PhD graduate, Leadshine's R&D team of 80 talented engineers is capable of designing high-quality motion control products based on the latest technologies. Leadsine's manufacturing facilities are ISO-9001 certified and professionally staffed.

Leadshine is committed to provide its customers with world-class motion control products at highly competitive prices. "LEADING technology and SHINING value" is always what Leadshine intends to offer to its customers.

R&E

Leadshine is proud of its talented research & development team, which is one of the best in the motion control industry. We are capable of designing world-class products which can meet high requirements of our customers. Many innovative designs and products from Leadshine have been awarded for patents by Chinese government.

Product Quality

Leadshine has been awarded the ISO 9001 registration for quality management practices since September 2004. The certification is a testimony of Leadshine's commitment to provide its customers with high quality products and services.

Technical Support

Staffed with a highly professional and experienced technical support team, Leadshine can help its customers to increase productivity, reduce design & selection risks, and minimize the product development time. We are able to support our customers through email, telephone, field support, product studying conference, and some other approaches.

You can contact Leadshine technical support by phone at 86-755-2641-8447, by fax at 86-755-2640-2718, or by email at tech@leadshine.com.

Quality Products Selling 1,200,000 pcs/year!

Design & Verification

Since the formation in 1997, Leadshine has been investing heavily in research and development for the newest motion technology. Leadshine owns a large number of patents and copyrights on its hardware and software of its products. Before released to its customers, all Leadshine products have been verified and tested in Leadshine's state-of-the-art laboratory.

Quality Assurance

All Leadshine's products have to pass QC and 24-hour aging test, making the usual return & repair rate is under 0.5%. And that is why Leadshine can offer LONGER warranty period (18 months) than most other motion control product manufacturers.

Assembly Line

Leadshine product quality is guaranteed by an ISO-certified manufacturing system which includes rigorous supplier selection, incoming parts QC, in-process QC, final QA, and 24-hour aging test. The certification is a testimony of Leadshine's commitment to provide its customers with high quality products and services.

Support & Service

Leadshine's professional and experienced technical team can help customers to reduce design and selection risks, and minimize product development time through support of email, field support, exhibitions, product studying conference, and etc.

Innovative Products with High Reliability

Stepper Drives

Currently, Leadshine offers two main series of 2-phase microstepper drives, the digital DM series and analog M series. The high performance DM drives are based on powerful 32-bit DSP control technology. Their features include super-low stepper noise, anti-resonance, low-speed ripple smoothing, and low motor heating. The low-cost M drives employ precise analog current control and are characterized by superior high-speed torque, relatively low stepper noise, and low motor heating. Leadshine also supplies 3-phase digital and analog stepper drives.

M Series Analog Stepper Drives (P19-P28)

Stepper Motors

Leadshine offers 2-phase and 3-phase stepper motors from NEMA frame size 14 to 51. Made of high quality cold roll sheet copper and anti-high temperature permanent magnet, Leadshine's stepper motors are highly reliable and generate low motor heating. Because of their nice internal damping characteristics, those stepper motors can run very smoothly and have no obvious resonance area within the whole speed ranges.

NEMA14 to NEMA51 Stepper Motors (P31 - P42)

Hybrid Servos

Leadshine's HBS series hybrid servos adopt hybrid motion technology prevent loss of synchronization due to transient or continued overload, extreme acceleration or deceleration, or excessive slew speed, thus can significantly improve the performance and reliability of your stepper systems. The HBS series offers an alternative for applications requiring high performance and high reliability when the servo was the only choise, while it remains cost-effective.

Hybrid Servos, 1 to 8 N*m, NEMA23 to NEMA34 (P43-P50)

World-class Products at Highly Competitive Prices

AC & DC Servos

Leadshine's brushless servos include ACS and ACH series DSP-based fully digital servo drives and ACM and BLM series brushless AC and DC servo motors. Because of their high performance and highly competitive price, they are ideal for replacing many popular AC servo drives available on the market.

Leadshine's brush servos include DCS series DSP-based fully digital servo drives and DCM series brush servo motors. The drives support command inputs of step and direction, analog input. Whether your application requires torque mode operation, accurate speed / velocity control or positioning, you may find the right drive to meet your requirements.

Highly Cost-effective Brushless Servos (P51—P6

Innovative DC Servo Products (P67 — P79)

Power Supplies

Leadshine offers three series power supplies, including SPS series (unregulated), RPS series (regulated) switching mode power supplies and PS series linear power supplies. These power supplies are specially designed to power inductive loads generated in stepper and servo systems. Features include low cost and high reliability.

SPS, RPS and PS Series Power Supplies (P81-P86)

Motion Controllers

Leadshine's full line of motion controllers includes single and multi-axis, bus-based and stand-alone controllers. Available interface options for international markets include PCI, USB, RS232 and Ethernet for the moment. Leadshine's controllers provide high speed performance and can handle many modes of motion such as point-to-point positioning, jogging, linear and circular interpolation, continuous interpolation and helix interpolation.

PCI-Bus, PC104 and Stand-alone Motion Controllers (P89-P102)

Product Catalog 2011 - 2012 Leading Technology

Stepper Drives

Selection Guide	3
DM Series Digital Stepper Drives	5
DM320C	9
DM422C	10
DM442	11
DM556	12
DM870	13
DM1182	14
DM2282	15
3DM683	16
DM805-AI	17
M Series Analog Stepper Drives	19
M542	22
M550	23
M760	24
M860	25
M880A	26
MA860	27
MA860H	28

Stepper Motors

Selection Guide 31
2-phase Stepper Motors
35/39 HSxx Series 33
42HSxx Series 34
57HSxx Series 35
86HSxx Series 36
110HSxx Series 37
130HSxx Series 38
3-phase Stepper Motors
573Sxx Series 39
863Sxx Series 40
Speed-Torque Curves 41
•

Hybrid Servos

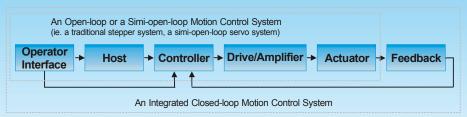
HBS Series	Hybrid	Somos		_	_	_	_	_	_		1	-
TIDO SELIES	HVDHU	361 VUS	 -	-	-	-	-	-	-	•	4	. 1

AC and DC Servos

Brushless Servos 53	
ACS306 57	
ACS606 59	
ACS806 61	
ACM Series AC Servo Motors 63	
BLM Series Brushless DC Servo Motors 65	
Brush Servos 67	
DCS303 69	
DCS810 71	
DCS810S 75	
DCM Series DC Servo Motors 77	

Power Supplies

373 36116	9	-	-	-	-	-	-	-	_	-	_	_	_	_	-	_	_	_	_	-	-	-				-	_	C	וו
RPS Serie	s	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		8	3
PS Series	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	35


Motion Controllers

Selection Guide 89
DMC1000B 91
DMC2410B 93
DMC5480 95
ENC7480 97
SMC6480 99
SMC6400R101

Introduction to Motion Control Shining Value

Basic Components of Motion Control System

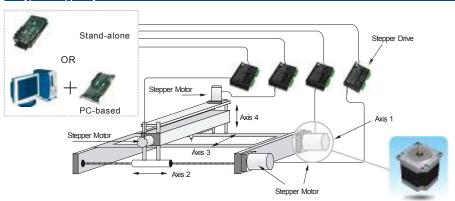
Many different components are used in a variety of combinations to create a modern motion control system. Usually, the system will be comprised of the following basic elements: controller, drive/amplifier, actuator. And for a more integrated motion control system will be comprised of feedback, operator interface and host, besides elements mentioned above. A simplified block diagram of a motion control system would appear as shown below.

* Operator Interface and Host

Operator interface and host are/is present to input control logic, modify programs, or provide real time operations, such as system shut down or schedule changes.

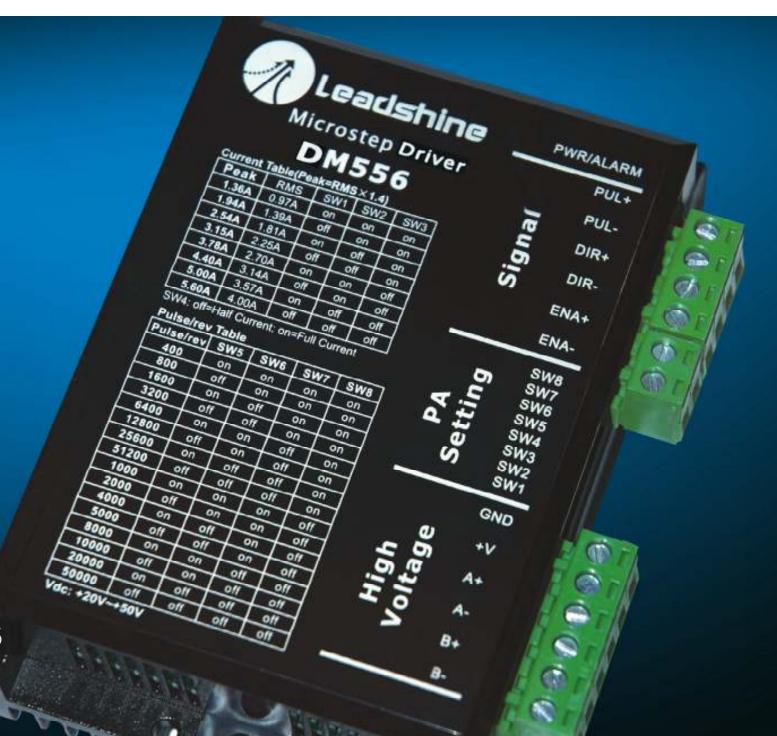
* Controller

The controller acts as brain of the system by taking the desired target positions and motion profiles and creating the trajectories for the motors to follow. It will include a means of entering a set of instructions or code into its memory which are then translated into a series of electrical pulses or analog signals and output to a drive for controlling some type of actuator.


* Drive/Amplifier

The drive/amplifier receives the signals from the controller and generate the current required to drive or turn the actuator.

The actuator provides the actual physical motion and will be closely coupled to the design characteristics of the drive. The drive/actuator set may be any one of several different design classifications. Typically, but by no means always, they will the form of an electronic drive and an electric motor. Other common means of motion are pneumatic or hydraulic actuators.


There are a wide variety of feedback devices that are commonly used in motion control systems today which provide information on linear or rotary motion, such as optical encoders, magnetic encoders and resolvers.

Selection Guide	3
DM Series Digital Stepper Drives —	5
DM320C ————	9
DM422C1	0
DM442 ———1	1
DM556 ———————————————————————————————————	2
DM870 —————1	3
DM11821	4
DM2282 —————1	5
3DM683 ————————————————————————————————————	6
DM805-AI 1	7
M Series Analog Stepper Drives — 1	9
M542 —————————2	2
M550 ————2	3
M760 ————————2	4
M860 —2	25
M880A —2	6
MA860 —2	7
MA860H2	28

Stepper Drives

Selection Guide for Stepper Drive

A stepper motor requires an electrical sequencer and it is called a stepper drive. The stepper drive is one of the key components in a stepper system. When you select a stepper drive for the special application, you can follow the following steps. Firstly, you should choose the drive type and determine the drive operating mode. Secondly, choose right supply voltage and output current according with the application and the motor. In the end, you should consider whether the acceptable control signals of the drive are right for those of your motion controller or not. Of course, the price of the chose drive should be acceptable too.

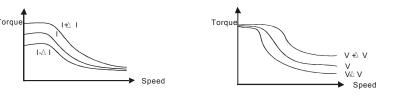
Drive Types

The output torque and power from a stepper motor are determined by the operating current, motor size, motor heat sinking, motor winding, and the type of the drive used. You can get much different performances from a given motor by choosing different type stepper drives.

There are some commonly-used drive types, such as unipolar constant voltage drive, unipolar L/nR constant voltage drive, unipolar timed bilevel drive, unipolar constant current drive, unipolar constant current drive and bipolar constant current microstepper drive. The highest output power and motor utilization for a given motor is achieved with the bipolar constant current drive. DC-losses is kept at a minimum due to maximum utilization of the copper in the winding and no power losses from leakage inductance and snubbing circuits since every winding only consists of no part

Bipolar constant current microstepper drive is an improved version of the basic full- and half-step bipolar constant-current drive. Here, the winding currents form a sine/cosine pair. This greatly improves low frequency performances by eliminating overshot movements, ringing, and resonances. Performances at medium and high-stepper rates are close to those of full- and half-step. This drive uses the same power stage as the bipolar constant-current drive, but extra electronics for setting the sine/cosine current levels are used. Microstepper can also increase resolution and step accuracy of the stepper systems.

Supply Voltage and Output Current


Although both regulated and unregulated power supplies can be used to power the drives, unregulated power supplies are preferred due to their ability to withstand current surge. The power supply voltage must be within the drive's allowable operating voltage range. Beyond that, the choice of voltage is dependent on the application and the motor used.

Higher supply voltage can increase motor torque at higher speeds, being helpful for avoiding losing steps. However, higher voltage may cause bigger motor vibration at lower speed, and may also cause over-voltage protection or even drive damage. Therefore, it is suggested to choose only a sufficiently high supply voltage for intended application, and use power supplies with theoretical output voltage of at least 10% below drive's maximum input voltage, leaving room for power fluctuation and back-EMF.

For a given motor, higher drive current will make the motor output more torque, but it also causes more heating in the motor and the drive. Therefore, output current is generally set to be such that the motor will not overheat for long time operation. Phase current rating supplied by motor manufacturer is important when setting a drives output current, however the setting also depends on the leads and motor connections. Since parallel and serial connections of motor coils will significantly change the resulting inductance and resistance, it is important to set drive output current based on motor's phase current and connection tyces.

Leadshine's stepper drives cover a broad operating voltage range, from 18 to 312VDC or 18 to 220VAC. And most of Leadshine's stepper drives have over-voltage and over-current protection functions. All of Leadshine's stepper drives use DIP switches to set motor's operating current, and all of them have automatic idle-current reduction function.

Drive Modes

The most common drive modes are full-step, half-step and microstepper.

FULL-STEP MODE: This is the basic stepper driving mode, it offers the simplest control electronics and it is recommended for high and medium frequency operation. At these frequencies, the inertia of the motor and the load smooth out the torroue, resulting in less wipartion and noise compared to low-speed operation.

Full-step

1step (1.8 for 2-phase)

HALF-STEP MODE: Half-step gives smoother movement at low step rates compared to full-step and can be used to lower resonances at low speeds. Half-step doubles the system resolution. Observe that for most stepper motors, the step accuracy specification only is valid for 2-phase-on positions. The accuracy is lower and the stop-position hysteresis is larger for 1-phase-on positions.

Half-step
1step (0.9 for 2-phase)

MICROstepper: The smoothest movement at low frequencies can be achieved with microstepper. If resonance-free movement at low step rates is important, the microstepper drive is the best choice. Microstepper can also be used to increase stop position accuracy beyond the normal motor limits.

Leadshine' stepper drives cover all drive modes. Both our dioital stepper drives and analog stepper drives can operate

Microstepper

1step (1.8 / n for 2-phase)

Introduction

in full-step, half-step and microstepper modes.

Since releasing its first stepper drive in 1997, Leadshine has been designing stepper drives to satisfy the requirements of its customers. Today, Leadshine is one of the LARGEST stepper drive manufacturers in the world. Every year, over 900,000 Leadshine stepper drives are implemented in thousands of applications around the world. The applications include CNC routers, laser machines, electronic equipment, packaging equipment, textile equipment, pick-and-place device, and so on.

Currently, Leadshine offers two main series of 2-phase microstepper drives, the digital DM series and analog M series. The high-performance DM drives are based on powerful 32-bit DSP control technology. Their features include anti-resonance, low-speed ripple smoothing, super-low stepper noise, and low motor heating. The low-cost M drives employ precise analog current control and are characterized by superior high-speed torque, relatively low stepoer noise, and low motor heating. Leadshine also supplies 3-bhase digital and analog stepper drives.

Sel	ectio	n Table										
Dhaaa	Series	Model	Output	Operating	Microstep	Driving Motors	Weight	Size (mm)	Control Signals			
Phase	Series	Model	Current (A)	Voltage (V)	Resolution	(NEMA Size)	(kg)	Size (IIIII)	PUL/DIR; CW/CCW	Single-ended; Differential		
		DM320C	0.3 - 2.0	DC(18-30)	1-512	14, 17, 23	0.09	86*55*20	PUL/DIR;	Single-ended; Differential		
		DM422C	0.3 - 2.2	DC(18-40)	1-512	14, 17, 23	0.115	86*55*20	PUL/DIR; CW/CCW	Single-ended;		
		DM442	0.5 - 4.2	DC(18-40)	1-512	14, 17, 23	0.19	116*69*26.5	PUL/DIR; CW/CCW	Single-ended; Differential		
		DM5564	2 0.5 - 5.6	DC(18-50)	1-512	14, 17, 23	0.28	118*75.5*34	PUL/DIR; CW/CCW	Single-ended; Differential		
	DM	DM870	≯ 0.5 - 7.0	DC(18-80)	1-512	17, 23, 34	0.28	118*75.5*34	PUL/DIR; CW/CCW	Single-ended; Differential		
		DM1182	0.5-8.2	AC(80-150)	1-512	34, 42	1.3	202*167*63	PUL/DIR; CW/CCW	Single-ended; Differential		
		DM2282	0.5-8.2	AC(80-220)	1-512	34, 42	1.3	202*167*63	PUL/DIR; CW/CCW	Single-ended; Differential		
2		DM805-AI	** 0.5-7.0	DC(18-80)	1-512	17, 23, 34	0.28	118*75.5*34	PUL/DIR; CW/CCW	Single-ended; Differential		
		M542	1.0-4.2	DC(20-50)	2-128, 5-125	14, 17, 23	0.28	118*75.5*34	PUL/DIR; CW/CCW	Single-ended; Differential		
		M550 4	≯ 1.2 - 5.0	DC(20-50)	2-256, 5-200	14, 17, 23	0.28	118*75.5*34	PUL/DIR; CW/CCW	Single-ended; Differential		
		M760 🚄	⊅ 1.45 - 6.0	DC(20-75)	2-256, 5-200	17, 23, 34	0.57	118*75.5*34	PUL/DIR; CW/CCW	Single-ended; Differential		
	M	M860 4	2 .4 - 7.2	DC(24-80)	2-256, 5-200	17, 23, 34	0.57	151*97*48	PUL/DIR; CW/CCW	Single-ended; Differential		
		M880A-	* 2.8 - 7.8	DC(24-80)	2-256, 5-200	17, 23, 34	0.57	151*97*48	PUL/DIR; CW/CCW	Single-ended; Differential		
		MA860	2.4 - 7.2	AC(18-58)	2-256, 5-200	17, 23, 34	0.58	151*97*48	PUL/DIR; CW/CCW	Single-ended; Differential		
		MA860H	2.4 - 7.2	AC(24-80)	2-256, 5-200	34, 42	0.65	151*97*52	PUL/DIR; CW/CCW	Single-ended; Differential		
3	DM	3DM683	0.5 - 8.3	DC(18-60)	200-51200s/r	17, 23, 34	0.30	118*75.5*34	PUL/DIR; CW/CCW	Single-ended; Differential		

Note: Please contact Leadshine or visit our websit for information about the drives with sensorless stall detection

- * This model has UL approved version and non-UL approved version.
- ** Command sources include step/direction, analog(0-5V).

DM422C
DM442
DM556
DM870
DM182
DM2282
3DM663
DM805-AI
M SERIS
M542
M550
M760
M660
M680A

MA860

Leadshine

DM Series Fully Digital Stepper Drives

9 Innovative Technologies

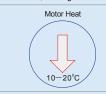

Sensorless Stall Detection

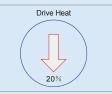
Anti-Resonance at Mid-range Super Low Noise

By detecting motor voltage, current, and back-emf Precision current control technology Most stepper systems resonate at mid-range speed signal, Leadshine digital drives can detect loss-of- and multi-stepping technology can between 10 to 18 rps. DM stepper drives can calculate synchronization of stepper motors without encoders, reduce about 70% motor noise, natural frequency of the stepper system and apply The sensorless stall detection eliminates cost of making the DM series to be an ideal damping in control algorithm for anti-resonance, Providing feedback devices and time of cable connection. solution for the applications require optimizing torque and nulling mid-range instability.

Low-speed Ripple Smoothing

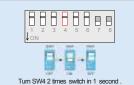
Electronic damping for 3 major resonance frequencies for stepper motors at low speed range, eliminating undesirable motor speed oscillation and delivering unique level of smoothness.


Multi-stepping Technology


Lower Motor Heating

Lower Drive Heating

Multi-stepping allows a low resolution input to produce a Due to DSP precision current control algorithm, Drive heat is also 20% lower, offering higher microstep output for smoother system performance, motor heat is 10 20 °C lower compare to a higher drive stability and energy This function can improve smoothness of the stepper traditional stepper drive. Longer motor lifetime efficiency. systems without upgrading your motion controllers. can be achieved, reducing maintenance cost.


Command Signal Smoothing Torque Improving

Self-test and Auto-configuration

Command signal smoothing can soften the effect Torque improvement increases torque up to 30% Motor-self-test and parameter-auto-configuration of suddent changes in velocity and direction, thus at high speed, therefore they can drive a normal technology offers optimum performance for delivering smoother performance and improving stepper motor to 3000 RPM or even higher, and different motors. It is easier for users to configure significantly increase production efficiency. system liftime. different axes or build different machines.

Features

- Sensorless stall detection eliminates cost of feedback devices and time of cable connection*
- Super-low motor noise offers excellent quietness
- Anti-Resonance optimizes torque and nulls mid-range instability technology
- Self-test and Auto-configuration offers optimum performance for different motors
- Multi-stepping allows a low resolution input to produce a higher microstep output for smoother system performance
- Command source include step/direction and analog (0 5 V)
- Output current, microstep resolutions, standstill current programmable
- Built-in motion controller for self-test or some simple applications
- . Options to set output current and microstep relolutions via DIP switch or software
- Drives for 2-phase and 3-phase stepper motors are available
- · Over-current, over-voltage, short-circuit protections

Introduction

By implementing the latest motion control technologies, Leadshine's DM series DSP-based stepper drives deliver excellent performance not available before. Unique features of super-low motor noise, extra smoothness and excellent high speed performance make DM stepper drives deliver servo-like performance at the cost of stepper drives. Leadshine DM series stepper drives are able to drive 2-phase or 3-phase stepper motors from NEMA8 to NEMA51.

Applications

Leadshine DM stepper drives are suitable for driving a wide range of stepper motors, from NEMA frame size 8 to 42. Typical applications includ CNC routers, laser cutters, laser markers, medical equipments, X-Y tables, measurement equipments, etc.

Electrical Specif	ications												
Parameters		Input	Voltage (V	DC)		Output Current (A)							
Model	Min	Т	ypical	Max		Min	Тур	ical	Max				
DM320C	+18		+24	+30		0.3	-		2.0				
DM422C	+18		+24	+40		0.3	-		2.2				
DM442	+18		+36	+40		0.5	-		4.2				
DM556	+18		+36	+50		0.5	-		5.6				
DM870 📨	+18		+60	+80		0.5	-		7.0				
DM1182	80 (VAC)) 11	0 (VAC)	150 (VA	C)	0.5	-		8.2				
DM2282	80 (VAC)	12	0 (VAC)	220 (VA	C)	0.5	-		8.2				
3DM683	+18		+48	+60		0.5	-		8.2				
DM805-AI	+18		+60	+80		0.5	-		7.0				
Parameters	Pulse Inpu	t Freque	ncy (kHz)	Logic S	ignal C	urrent (mA) Isolat	ion Resista	nce (M)				
Model	Min	Typical	Max	Min	Typic	al Max	Min	Typical	Max				
DM Series	0	-	300**	7	10	16	500	-	-				

*This function is available on the AM882 and other EMxxx stepper drives. Visit Leadshine's website for the latest information about our digital stepper drives

^{**} Those of the DM320C and DM422C are 75 kHz, and that of the DM442 is 200 kHz

Red LED: Error Alarm

Green LED: Power Indicator

Pin6 PUL+ Pulse Input(+)

Pin5 PUL- Pulse Input(-) Pin4 DIR+ Direction Input(+)

Pin3 DIR- Direction Input(-)

Pin6 GND Power Ground / AC

Phase A-

Phase B+

Phase B-

Phase A+ for 3-phase

Pin3 U Pin2 V

Pin1 W

Pin5 +Vdc Power Input / AC

Pin2 ENA+ Enable Input(+)


Pin1 ENA- Enable Input(-)

Pin Assignment and Description

ProTuner (Windows Based Setup Software)

- Upload and Download parameter settings
- PI parameter settings for current loop
- Microstep resolution and output current settings
- Operation mode configuration :PUL/DIR, CW/CCW, analog
- DIR logic level setting
- Active edge of pulse signal setting
- · Electronic damping coefficient setting
- Anti-resonance parameter settings for 3 resonance area
- Parameter settings for self motion test or a simple application
- Read the latest 10 failure events and clear these events
- * 1 PC RS232 interface is necessary.
- ** Leadshine offers special cable for communication between ProTuner and the drive.

Pin4

Pin3 A-

Pin1 B-

Pin2 B+

1. Users are suggested to use motor self-test and auto-configuration function when powering up the system (with the motor) for the first time, or replacing a new motor.

There are two connector types for a DM stepper drive. Connector type P1 (See figure below.) is for control signal

Pin6 NC Not connected

Pin5 RXD RS232 receive.

Pin4 GND Signal ground.

Pin3 TXD RS232 transmit.

+5V Power for STU-DM only

When configuring an EM series stepper

drive through DIP switches, use

SW1,2,3 to set output current, and

SW5,6,7 to set mmicrostep resolutions. SW4 is for standstill current setting and

motor self-test & auto-configuration

function (Turn SW4 2 times switch in 1

second.). SW8 is for active edge setting

Pin2

Pin1 NC

of pulse signals.

Handheld Small Tuning Unit STU-DM

Stepper Motors

- 2. To operate at current and microstep settings configured by software or STU, DIP switch must set to default mode.
- 3. Only software **ProTuner** can be used to configure anti-resonance parameter settings.

PC Based Configuration Software ProTuner

4. How many times the RED light blinks on in a periodic time indicates what protection has been activated. See manuals for detail.

PC Based and Handheld Configuration & Tuning Tools

Professional Configuration & Tuning Tools

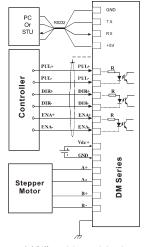
Power Supplies

For most of applications, configurations set by self-test and auto-configuration function should be good enough to meet the application requirements. However, a user can also configure the advanced features such as anti-resonance and advanced current loop tuning through software or STU-DM, a simple device specially designed for easy tuning.

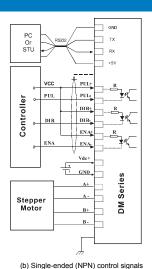
RS 232

DM Series Stepper Drives

Upload and Download parameter settings PI parameter settings for current loop


STU-DM (Handheld Configuration and Tuning Unit)

- Microstep resolution and output current settings
- Operation mode configuration :PUL/DIR, CW/CCW, analog
- DIR logic level setting
- Active edge of pulse signal setting
- Parameter settings for self motion test or a simple application


* Leadshine offers special cable for communication between the STU-DM and the drive.

Typical Connections

(a) [

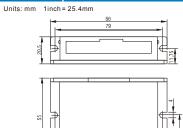
Differential	controlsignals	

DM320C

Introduction

The DM32OC is a versatility fully digital stepper drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque and nulls mid-range instability. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepper drives on the market.

Applications


Suitable for a wide range of stepper motors, from NEMA8 to NEMA23. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM320C an ideal solution for applications that require low-speed smoothness.

Function Desc	ription
Function	Description
Microstep Setting	Microstep resolution is programmable. When not in software configured mode, microstep resolution is set by SW5, $\overline{6}$ of the DIP switch. In order to avoid losing steps, do not change the microstep resolution on the fly.
Current Setting	Output current is programmable. When not in software configured mode, operating current is set by SW1,2,3 of the DIP switch. Up to 2.0 A. Select a current setting closest to your motor's required current.
Automatic standstill current reduction;	SW4 is used for the automatic standstill current reduction, self-test and auto-configuration functions. When the former active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to P=1*R) of the original value.
Self-test and auto-configuration	If the user changes the status/position of SW4 twice in 1 second, the drive will self-test the driving motor and auto- configuration control parameters, offering optimum performance with different motors
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA- are for the enable/ disable control signal. ALM+ and ALM- are for the alarm signal. Series connect resistors for current-limiting when +12V or +24V is used.
Motor Connector	A+, $A-$ and $B+$, $B-$ are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.
Power Connector	Recommended to use power supplies $$ with output of +18 VDC $$ to +24 VDC, leaving room for power fluctuation and back-EMF.
Indicators	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by re-powering it to make it function properly after removing problem(s). See its manual for more information.

Parameter Settings	Operating Cu	rrent Setting			
Microstep resolution and output current are programmable. When not in	Peak Current	RMS Current	SW1	SW2	SW3
software configured mode, the drive uses a 6-bit DIP switch to set	Default (software co	onfigured, 0.3-2.0 A)	on	on	on
microstep resolution and motor operating current, as shown below:	0.5 A	0.35 A	off	on	on
Operating Current Setting Microstep Resolution Setting	0.7 A	0.50 A	on	off	on
All ON is software configured All ON is software configured	1.0 A	0.71 A	off	off	on
SW1 SW2 SW3 SW4 SW5 SW6	1.2 A	0.86 A	on	on	off
	1.5 A	1.07 A	off	on	off
Standstill Current (ON haft / OFF full)	1.7 A	1.21 A	on	off	off
Self-test and Auto-configuration (2 changes in 1 second)	2.0 A	1.43 A	off	off	off

Mechanical Specifications

Microstep Resolution Setting				
Steps/rev.	SW5	SW6		
Default (software configured, 1-512)	on	on		
800	off	on		
3200	on	off		
12800	off	off		

DM422C c743 us

ntroduction

The DM422C is a versatility fully digital stepper drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque and nulls mid-range instability. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepper drives on the market.

Applications

Power Connector

Indicators

Suitable for a wide range of stepper motors, from NEMA8 to NEMA23. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM422C an ideal solution for applications that require low-speed smoothness.

reverse default motion direction.

Function Desc	•
Function	Description
	Microstep resolution is programmable. When not in software configured mode, microstep resolution is set by SW5, 6 of the DIP switch. In order to avoid losing steps, do not change the microstep resolution on the fly.
Current Setting	Output current is programmable. When not in software configured mode, operating current is set by SW1,2,3 of the DIP switch. Up to 2.2A. Select a current setting closest to your motor's required current.
Automatic standstil current reduction;	SW4 is used for the automatic standstill current reduction, self-test and auto-configuration function. When the former active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to P=1*R) of the original value.
Self-test and auto-configuration	If the user changes the status/position of SW4 twice in 1 second, the drive will self-test the driving motor and auto- configuration control parameters, offering optimum performance with different motors
Control Signals	OPTO is for the opto-coupler power supply, typically+5V. PUL is for the pulse command signal. DIR is for the direction control signal. ENA is for the enable/ disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.

Motor Connector A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will

Recommended to use power supplies with output of +18 VDC to +36 VDC, leaving room for power fluctuation and

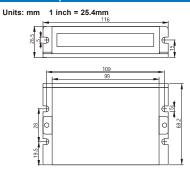
There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft

will be free. Reset the drive by re-powering it to make it function properly after removing problem(s). See its manual

for more information.					
Parameter Settings	Operating Cu	urrent Setting			
Microstep resolution and output current are programmable. When not in	Peak Current	RMS Current	SW1	SW2	SW3
software configured mode, the drive uses a 6-bit DIP switch to set	Default (software o	onfigured, 0.3-2.2 A)	on	on	on
microstep resolution, and motor operating current, as shown below:	0.5 A	0.35 A	off	on	on
Operating Current Setting Microstep Resolution Setting	0.7 A	0.5 A	on	off	on
All ON is software configured All ON is software configured	1.0 A	0.7 A	off	off	on
SW1 SW2 SW3 SW4 SW5 SW6	1.3 A	0.9 A	on	on	off
311 312 310 311 310 310	1.6 A	1.2 A	off	on	off
Standstill Current (ON haft / OFF full)	1.9 A	1.4 A	on	off	off
Self-test and Auto-configuration (2 changes in 1 second)	2.2 A	1.6 A	off	off	off

Self-test and Auto-configuration (2 changes in 1 second)	2.2 A 1.6 A	off	off off
Mechanical Specifications	Microstep Resolution Sett	ing	
Units: mm 1inch = 25.4mm	Steps/rev.	SW5	SW6
86	Default (software configured, 1-512)	on	on
79	1600	off	on
THE CONTRACTOR OF THE CONTRACT	3200	on	off
	6400	off	off

The DM442 is a versatility fully digital stepper drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque, nulls mid-range instability and good high speed performance. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepper drives on the market.


Suitable for a wide range of stepper motors, from NEMA10 to NEMA23. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM442 an ideal solution for applications that require low-speed smoothness and good high speed performance.

Function Desc	ription
Function	Description
Microstep Setting	Microstep resolution is programmable. When not in software configured mode, microstep resolution is set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep resolution on the fly.
Current Setting	Output current is programmable. When it's not in software configured mode, operating current is set by SW1,2,3 of the DIP switch. Up to 4.2 A. Select a current setting closest to your motor's required current.
Automatic standstill current reduction;	SW4 is used for the automatic standstill current reduction, self-test and auto-configuration function. When the former active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=l^{2*}R$) of the original value.
Self-test and auto-configuration	If the user changes the status/position of SW4 twice in 1 second, the drive will self-test the driving motor and auto- configuration control parameters, offering optimum performance with different motors
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are the for direction control signal. ENA+ and ENA- are for the enable/ disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.
Motor Connector	A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.
Power Connector	Recommended to use power supplies with output of +18 VDC to +36 VDC, leaving room for power fluctuation and back-EMF.
Indicators	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by re-powering it to make it function properly after removing problem(s). See its manual for more information.

more information.					
Parameter Settings	Operating Cu	rrent Setting			
Microstep resolution and output current are programmable. When not in	Peak Current	RMS Current	SW1	SW2	SW3
software configured mode, the drive uses an 8-bit DIP switch to set	Default (software or	onfigured, 0.5-4.2 A)	оп	оп	o n
microstep resolution, and motor operating current, as shown below:	1.46 A	1.04 A	o ff	οп	o n
Operating Current Setting All ON is software configured Microstep Resolution Setting All ON is software configured	1.91 A	1.36 A	0 n	o ff	o n
All ON is software configured All ON is software configured All ON is software configured	2.37 A	1.69 A	11 o	11 0	o n
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8	2.84 A	2.03 A	оп	оп	o ff
3W1 3W2 3W3 3W4 3W3 3W6 3W7 3W6	3.31 A	2.36 A	o ff	оп	o ff
Standstill Current (ON haft / OFF full)	3.76 A	2.69 A	оп	0 ff	o ff
Self-test and Auto-configuration (2 changes in 1 second)	4.20 A	3.00 A	11 o	11 0	o ff

Mechanical Specifications

Microstep Resolution S	etting			
Steps/rev.	SW5	SW6	SW7	SW8
Default (software configured, 1-512)	on	on	on	on
400	off	on	on	on
800	on	off	on	on
1600	off	off	on	on
3200	on	on	off	on
6400	off	on	off	on
12800	on	off	off	on
25600	off	off	off	on
1000	on	on	on	off
2000	off	on	on	off
4000	on	off	on	off
5000	off	off	on	off
8000	on	on	off	off
10000	off	on	off	off
20000	on	off	off	off
25000	off	off	off	off

DM556 c**91**³ us

The DM556 is a versatility fully digital stepper drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque, nulls mid-range instability and good high speed performance. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepper drives on the market.

Suitable for a wide range of stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM556 an ideal solution for applications that require low-speed smoothness and good high speed performance.

Function Desc	ription
Function	Description
Microstep Setting	Microstep resolutions is programmable. When not in software configured mode, microstep resolution is set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep resolution on the fly.
Current Setting	Output current is programmable. When it's not in software configured mode, operating current is set by SW1,2,3 of the DIP switch. Up to 5.6 A. Select a current setting closest to your motor's required current.
Automatic standstill current reduction;	SW4 is used for the automatic standstill current reduction, self-test and auto-configuration function. When the former active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=1^{2*}R$) of the original value.
Self-test and auto-configuration	If the user changes the status/position of SW4 twice in 1 second, the drive will self-test the driving motor and auto- configuration control parameters, offering optimum performance with different motors
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA- are for the enable/disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.
Motor Connector	A+, $A-$ and $B+$, $B-$ are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.
Power Connector	Recommended to use power supplies $$ with output of +20 VDC to +45 VDC, leaving room for power fluctuation and back-EMF.
Indicators	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, it he motor shaft will be fore Dear the drive in the reduced it is fault in second of the drive in the proof of the drive is the motor of the drive.

Parameter Settings	Operating Cu	rrent Setting			
Microstep resolution and output current are programmable. When not in		RMS Current	SW1	SW2	SW3
software configured mode, the drive uses an 8-bit DIP switch to set	Default (software co	onfigured, 0.5-5.6 A)	o ff	o ff	o ff
microstep resolution, and motor operating current, as shown below:	2.1 A	1.5 A	o n	0 ff	0 ff
Operating Current Setting All OFF is software configured Microstep Resolution Setting All ON is software configured	2.7 A	1.9 A	11 0	оп	11 0
All OFF is sollware configured All ON is software configured	3.2 A	2.3 A	0.0	оп	o ff
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8	3.8 A	2.7 A	o ff	o II	o n
3W1 3W2 3W3 3W4 3W3 3W0 3W7 3W6	4.3 A	3.1 A	o n	11 0	o n
Standstill Current (ON haft / OFF full)	4.9 A	3.5 A	o ff	оп	o n
Solf-toet and Auto-configuration (2 changes in 4 second)	56A	4 0 A	0.0	0.0	o n

be free. Reset the drive by re-powering it to make it function properly after removing problem(s). See its manual for

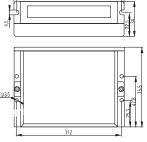
och-test and Pate-configuration (2 changes in 1 second)	
Mechanical Specifications	
Units: mm 1 inch = 25.4mm	
118 112	

more information.

29	322
4-1635	26.3 (S) 0

Microstep Resolution Setting				
Steps/rev.	SW5	SW6	SW7	SW8
Default (software configured, 1-512)	on	on	on	on
400	off	on	on	on
800	on	off	on	on
1600	off	off	on	on
3200	on	on	off	on
6400	off	on	off	on
12800	on	off	off	on
25600	off	off	off	on
1000	on	on	on	off
2000	off	on	on	off
4000	on	off	on	off
5000	off	off	on	off
8000	on	on	off	off
10000	off	on	off	off
20000	on	off	off	off
25000	off	off	off	off

The DM870 is a versatility fully digital stepper drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque, nulls mid-range instability and good high speed performance. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepper drives on the market.


Suitable for a wide range of stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM870 an ideal solution for applications that require low-speed smoothness and good high speed performance.

Function Desc	ription
Function	Description
Microstep Setting	Microstep resolution is programmable. When not in software configured mode, microstep resolution is set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep resolution on the fly.
Current Setting	Output current is programmable. When not in software configured mode, operating current is set by SW1,2,3 of the DIP switch. Up to 7.0 A. Select a current setting closest to your motor's required current.
Automatic standstill current reduction;	SW4 is used for the automatic standstill current reduction, self-test and auto-configuration function. When the former active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=1^{24}R$) of the original value.
Self-test and auto-configuration	If the user changes the status/position of SW4 twice in 1 second, the drive will self-test the driving motor and auto- configuration control parameters, offering optimum performance with different motors.
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA- are for the enable/ disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.
Motor Connector	A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.
Power Connector	Recommended to use power supplies with output of +20 VDC to +68 VDC, leaving room for power fluctuation and back-EMF.
Indicators	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by re-powering it to make it function properly after removing problem(s). See its manual for more information.

Parameter Settings	Operating Cu	rrent Setting			
Microstep resolution and output current are programmable. When not in	RMS Current	SW1	SW2	SW3	
software configured mode, the drive uses an 8-bit DIP switch to set	DIP switch to set town below: 2.6 A 1.8 A 0.0 off off off on Setting on Setting 4.0 A 2.8 A 0.0 off off on Setting offigured 4.0 A 2.8 A 0.0 off off off on Setting offigured 4.0 A 2.8 A 0.0 off off off off on Setting offigured 4.0 A 2.8 A 0.0 off off off off off off off off off of				
microstep resolution, and motor operating current, as shown below:	2.6 A	1.8 A	o n	11 o	11 o
Operating Current Setting Microstep Resolution Setting All OFF is software configured All ON is software configured	3.4 A	2.4 A	o ff	0 n	o ff
All OFF is software configured All ON is software configured	4.0 A	2.8 A	o n	o n	o ff
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8	4.8 A	3.4 A	11 0	11 0	0 n
3W1 3W2 3W3 3W4 3W3 3W0 3W7 3W8	5.4 A	3.8 A	o n	o ff	o n
Standstill Current (ON haft / OFF full)	6.1 A	4.3 A	o ff	o n	o n
Self-test and Auto-configuration (2 changes in 1 second)	7.0 A	5.0 A	o n	o n	o n

Mechanical Specifications Units: mm 1 inch = 25.4mm

Microstep Resolution S	etting			
Steps/rev.	SW5	SW6	SW7	SW8
Default (software configured, 1-512)	on	on	on	on
400	off	on	on	on
800	on	off	on	on
1600	off	off	on	on
3200	on	on	off	on
6400	off	on	off	on
12800	on	off	off	on
25600	off	off	off	on
1000	on	on	on	off
2000	off	on	on	off
4000	on	off	on	off
5000	off	off	on	off
8000	on	on	off	off
10000	off	on	off	off
20000	on	off	off	off
25000	off	off	off	off

The DM1182 is a versatility fully digital stepper drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque, nulls mid-range instability and good high speed performance. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepper drives on the market.

Suitable for a wide range of stepper motors, from NEMA34 to NEMA51, It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM1182 an ideal solution for applications that require low-speed smoothness and good high speed performance.

removing problem(s). See its manual for more information.

Function Desc	ription
Function	Description
Microstep Setting	Microstep resolution is programmable. When not in software configured mode, microstep resolution is set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep resolution on the fly.
Current Setting	Output current is programmable. When not in software configured mode, operating current is set by SW1,2,3 of the DIP switch. Up to 8.2 A. Select a current setting closest to your motor's required current.
Automatic standstill current reduction;	SW4 is used for the automatic standstill current reduction, self-test and auto-configuration function. When the former active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=I^{2*}R$) of the original value.
Self-test and auto-configuration	If the user changes the status/position of SW4 twice in 1 second, the drive will self-test the driving motor and auto- configuration control parameters, offering optimum performance with different motors
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA- are for the enable/ disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.
Motor Connector	A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.
Power Connector	Recommended to use power supplies with output of 90 VAC to 120 VAC, leaving room for power fluctuation and back-EMF.
Indicators/ Fault Out	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shart will be free and fault out (OC) will be pulled to low. Reset the drive by re-powering it to make it function properly after

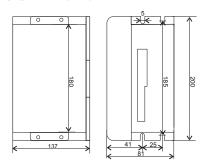
Parameter Settings	Operating Cu	rrent Setting			
Microstep resolution and output current are programmable. When not in	Peak Current	RMS Current	SW1	SW2	SW3
software configured mode, the drive uses an 8-bit DIP switch to set	Default (software co	onfigured, 0.5-8.2 A)	o ff	o ff	o II
microstep resolution, and motor operating current, as shown below:	2.2 A	1.6 A	o n	11 o	11 o
Operating Current Setting All OFF is software configured All ON is software configured	3.2 A	2.3 A	off	o n	o ff
All OFF is software configured All ON is software configured	4.2 A	3.2 A	o n	o n	o ff
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8	5.2 A	3.7 A	o f1	11 0	o n
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8	6.3 A	4.4 A	o n	o ff	o n
Standstill Current (ON haft / OFF full)	7.2 A	5.2 A	o ff	o n	o n
Self-test and Auto-configuration (2 changes in 1 second)	8.2 A	5.9 A	o n	o n	o n

Mechanica	al Specification	ns	
Units: mm	1 inch = 25.4mm	1	
0	180	185	200
(0			1 ↓

Microstep Resolution S	etting			
Steps/rev.	SW5	SW6	SW7	SW8
Default (software configured, 1-512)	on	on	on	on
400	off	on	on	on
800	on	off	on	on
1600	off	off	on	on
3200	on	on	off	on
6400	off	on	off	on
12800	on	off	off	on
25600	off	off	off	on
1000	on	on	on	off
2000	off	on	on	off
4000	on	off	on	off
5000	off	off	on	off
8000	on	on	off	off
10000	off	on	off	off
20000	on	off	off	off
25000	off	off	off	off

The DM2282 is a versatility fully digital stepper drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque, nulls mid-range instability and good high speed performance. Motor auto-identification and parameter autoconfiguration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepper drives on the market.

Suitable for a wide range of stepper motors, from NEMA34 to NEMA51, It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM2282 an ideal solution for applications that require low-speed smoothness and good high speed performance.



Function Desc	ription
Function	Description
Microstep Setting	Microstep resolution is programmable. When not in software configured mode, microstep resolution is set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep resolution on the fly.
Current Setting	Output current is programmable. When not in software configured mode, operating current is set by SW1,2,3 of the DIP switch. Up to 8.2 A. Select a current setting closest to your motor's required current.
Automatic standstill current reduction;	SW4 is used for the automatic standstill current reduction, self-test and auto-configuration function. When the former active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=I^{2*}R$) of the original value.
Self-test and auto-configuration	If the user changes the status/position of SW4 twice in 1 second, the drive will self-test the driving motor and auto- configuration control parameters, offering optimum performance with different motors
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA- are for the enable/ disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.
Motor Connector	A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.
Power Connector	Recommended to use power supplies with output of 90 VAC to 200 VAC, leaving room for power fluctuation and back-EMF.
Indicators/ Fault Out	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free and fault out (OC) will be pulled to low. Reset the drive by re-powering it to make it function properly after removing problem(s). See its manual for more information.

Parameter Settings		Operating Cu	rrent Setting			
Microstep resolution and output		RMS Current	SW1	SW2	SW3	
	drive uses an 8-bit DIP switch to set	Default (software or	onfigured, 0.5-8.2 A)	o ff	off	o ff
microstep resolution, and motor	operating current, as shown below:	2.2 A	1.6 A	o n	11 0	11 o
Operating Current Setting Microstep Resolution Setting		3.2 A	2.3 A	o ff	o n	o ff
All OFF is software configured	All ON is software configured	4.2 A	3.2 A	o n	o n	o ff
SW1 SW2 SW3 SW4	SW5 SW6 SW7 SW8	5.2 A	3.7 A	110	11.0	o n
3W1 3W2 3W3 3W4	3W3 3W0 3W7 3W6	6.3 A	RMS Current SW1 SW2 SW3 Infigured, 0.5-8.2 A) ort ort ort 1.6 A on ort ort 2.3 A ort on ort 3.2 A on on ort			
Standstill Current (O	N baft / OFF full\	7.2 A	5.2 A	o ff	o n	оп
Self-test and Auto-configuration		8.2 A	5.9 A	o n	o n	o n

Mechanical Specifications

Units: mm 1 inch = 25.4mm

Microstep Resolution Setting							
Steps/rev.	SW5	SW6	SW7	SW8			
Default (software configured, 1-512)	on	on	on	on			
400	off	on	on	on			
800	on	off	on	on			
1600	off	off	on	on			
3200	on	on	off	on			
6400	off	on	off	on			
12800	on	off	off	on			
25600	off	off	off	on			
1000	on	on	on	off			
2000	off	on	on	off			
4000	on	off	on	off			
5000	off	off	on	off			
8000	on	on	off	off			
10000	off	on	off	off			
20000	on	off	off	off			
25000	off	off	off	off			

3DM683

The 3DM683 is a versatility fully digital 3-phase stepper drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque, nulls mid-range instability and good high speed performance. Motor auto-identification and parameter autoconfiguration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepper drives on the market.

Applications

Suitable for a wide range of stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the 3DM683 an ideal solution for applications that require low-speed smoothness and good high speed performance.

Function Desc	ription
Function	Description
Microstep Setting	Microstep resolution is programmable. When not in software configured mode, microstep resolution is set by SW5, 6 , 7 , 8 of the DIP switch. In order to avoid losing steps, do not change the microstep resolution on the fly.
Current Setting	Output current is programmable. When not in software configured mode, operating current is set by SW1,2,3 of the DIP switch. Up to 8.3 A. Select a current setting closest to your motor's required current.
Automatic standstill current reduction;	SW4 is used for the automatic standstill current reduction, self-test and auto-configuration function. When the former active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=I^{2*}R$) of the original value.
Self-test and auto-configuration	If the user changes the status/position of SW4 twice in 1 second, the drive will self-test the driving motor and auto- configuration control parameters, offering optimum performance with different motors
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA- are for the enable/ disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.
Motor Connector	${\sf U}, {\sf V}, {\sf W}$ are for motor connections. Exchanging the connection of two wires to the drive will reverse default motion direction.
Power Connector	Recommended to use power supplies $$ with output of +20 VDC to +48 VDC, leaving room for power fluctuation and back-EMF.
Indicators	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by re-powering it to make it function properly after removing problem(s). See its manual for

Parameter Settings	Operating Cu	rrent Setting			
Microstep resolution and output current are programmable. When not in		RMS Current	SW1	SW2	SW3
software configured mode, the drive uses an 8-bit DIP switch to set	Default (software or	onfigured, 0.5-8.3 A)	110	0 11 0	0 11 0
microstep resolution, and motor operating current, as shown below:	3.2 A	2.3 A	o n	o II	o II
Operating Current Setting All OFF is software configured Microstep Resolution Setting All ON is software configured	4.0 A	2.9 A	o ff	o n	o ff
All OFF is software configured All ON is software configured	4.9 A	3.5 A	o n	o n	11 o
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8	5.7 A	4.1 A	o ff	o ff	o n
3W1 3W2 3W3 3W4 3W3 3W0 3W7 3W6	6.4 A	4.6 A	o n	o ff	оп
Standstill Current (ON haft / OFF full)	7.3 A	5.2 A	0 ff	o n	o n
Solf-test and Auto-configuration (2 changes in 1 second)	8.3 A	5.9 A	o n	o n	o n

Self-test and Auto-configuration (2 changes in 1 second)	0.574	
lechanical Specifications	Microstep Resolution S	etting
Jnits: mm 1 inch = 25.4mm	Steps/rev.	SW5
	Default (software configured)	on
118 112	400	off
	800	on
#\ \footnote{+}	1600	off
\$\frac{1}{2}\text{\$\frac{1}{2}}\	3200	on
J*\ \	6400	off
	12800	on
	25600	off
	1000	on
	2000	off
	4000	on
4 <u>-1µ35</u>	5000	off
	8000	on
	10000	off
44 1	20000	on
112	25000	~

on on on on on on on on off off off off on 25000 off off off off

on

off

on

on

on

on

leadshine

The DM805-AI is a multi-function digital stepper drive and it belongs to DM series stepper drives. It has all the features that other DM drives have. The DM805-Al is distinguished from other DM series drives by it's operating modes. The DM805-Al can be operated in 4 different modes. They are 0-5V speed, low/high speed, externalPOT and pulse/direction modes.

Three built-in potentiometers can be used to set the velocity, acceleration and deceleration. In 0-5V speed mode, the motor speed follows the analog 0-5V input. In Low/HIGH speed mode, the motor speed is selected by the digital input and adjusted by the high/low speed potentiometers. In pulse/direction mode, the DM805-Al acts as a traditional stepper drive. There is a 5V auxiliary output for customer use. The user can run the motor with the least configuration and connection, without buying a expensive motion controller.

Function Desc	Function Description					
Function	Description					
Microstep Setting	Microstep resolution is programmable. When not in software configured mode, microstep resolution is set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep resolution on the fly.					
Current Setting	Output current is programmable. When not in software configured mode, operating current is set by SW1,2,3 of the DIP switch. Up to 8.2 A. Select a current setting closest to your motor's required current.					
Automatic standstill current reduction;	SW4 is used for the automatic standstill current reduction, self-test and auto-configuration function. When the former active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=I^{2*}R$) of the original value.					
Self-test and auto-configuration	If the user changes the status/position of SW4 twice in 1 second, the drive will self-test the driving motor and auto- configuration control parameters, offering optimum performance with different motors.					
Control Signals	The DM805-Al is a multi-function digital stepper drive. It can be operated in 0-5V speed, low/high speed, externalPOT and pulse/direction modes. There are 3 potentiometers, 4 digital inputs and 1 analog input can be configured to control the acceleration, speed, position and direction in different modes.					
Motor Connector	A+, $A-$ and $B+$, $B-$ are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.					
Power Connector	Recommended to use power supplies with output of 90 VAC to 200 VAC, leaving room for power fluctuation and back-EMF.					
Indicators	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by re-powering it to make it function properly after removing problem(s). See its manual for					

Paramet	ter Settii	ngs					
Microstep r							
programmabl	le. When no	t in softv	vare confi	gured	mode, the o	Irive use	s an
8-bit DIP swit	tch to set n	nicrostep	resolution	n, and	motor oper	ating cur	rent,
as shown bel	low:						

more information.

Operating Current All OFF is software configured					licrostep ON is soft			erating N	lode	
	_	_	_				Щ.		Щ.	
	SW1	SW2	SW3	SV	/ 4	SW5	SW6	SW7	SW8	
						•			•	

Standstill Current (ON haft / OFF full) Self-test and Auto-configuration (2 changes in 1 second)

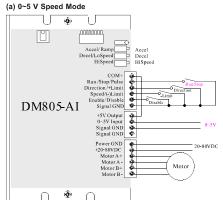
Peak Current	RMS Current	SW1	SW2	SW3
Default (software co	onfigured, 0.5-7.0 A)	11 0	0 11 0	11 0
2.6 A	1.8 A	o n	o ff	o ff
3.4 A	2.4 A	o ff	o n	o ff
4.0 A	2.8 A	o n	0 n	11 0
4.8 A	3.4 A	11 o	0 11 0	оп
5.4 A	3.8 A	о п	o ff	оп
6.1 A	4.3 A	o ff	o n	оп
7.0 A	5.0 A	o n	o n	0.0

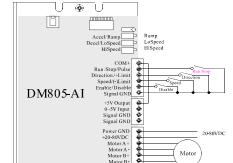
Microstep Resolution Setting						
Steps/rev.	SW5	SW6				
Default (software configured, 1-512)	on	on				
400	off	on				
1600	on	off				
12800	off	off				

Mechanical Specifications

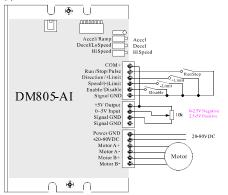
Units:

mm	1 inch = 25.4mm	
	118	
4.5		
41		
	TT TT	1
		15.5
4- <u> µ35</u>		7
	112	

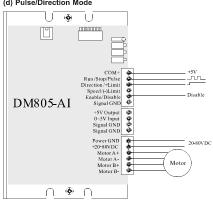

Applications


Particularly suitable for the applications which need to adjust the velocity via the potentiometer or analog 0-5V command. Owing to high torque and super-low motor noise at low speed, stepper solution based on the DM805-Al can be used to replace the brushless motor and gearbox solution, which is used in various kinds of machines, such as rotary heat exchange, conveyor belts, transport vehicle, offering longer life time and lower cost than the later.

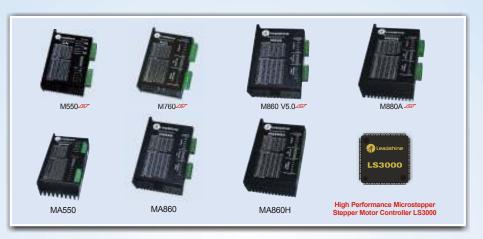
Operating Mo	de Setti	ng	
Operating Modes	SW7	SW8	Descriptions
0~5 V Speed	on	on	Speed controlled by the 0~5V, and direction controlled by the direction input.
Low/High Speed	off	on	Speed controlled by the preset low speed and high speed, and direction control by the direction input.
External POT	on	off	Both speed and direction are controlled by the 0~5V. 0~2.5 V, negative direction; 2.5~5V, positive direction.
Pulse/Direction	off	off	Speed and movement distance are controlled by the pulse, and direction controlled by the direction input.


Potentiometer Function in Different Operating Modes						
Potentiometers	0~5V Speed Mode	Low/High Speed Mode	External POT Mode	Pulse/Direction Mode		
Accel / Ramp	Acceleration	Ramp	Acceleration	N/A		
Decel / LoSpeed	Deceleration	Low Speed	Deceleration	N/A		
HiSpeed	High Speed	High Speed	High Speed	N/A		

Typical Connections


(c) External POT Mode

(d) Pulse/Direction Mode


 \cap \bullet \cap

(b) Low/High Speed Mode

20

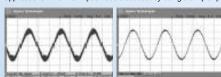
Highly Cost-effective

New M Series Analog Stepper Drives

Features

- ◆ The 3' generation of economical high performance stepper drives
- lackless Self—adjust ment technology, providing optimal performance with different motors
- Precise current control technology with less motor heating
- ♦ 7 models, covering 20 VDC to 112VDC of 18 VAC to 80VAC operating voltage ranges
- Excellent high—speed performance
- ◆ S m o other move ment at low ¬ peed
- lacklacklack Lower motor noise and heating than most analog stepper drives on the market

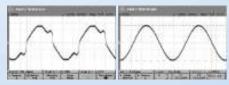
Introduction


The new M series drives are the latest analog stepper drives Leadshine has developed after more than 12 years R&D experiences. These drives provide better performance and offer higher performance-price ratios. They are the most cost-effective stepper drives on the market.

The new M series stepper drives employ Leadshine's innovative patented control technologies. With the adoption of its pioneer "pure-sinusoidal current control technology" and the latest "self-adjustment technology", those drives can effectively reduce current ripples and mid-range vibration, enabling different motors to run at optimal performance and with lower heating. They can also eliminate drawbacks of difficulty of driving various motors, such as high heating with smaller inductance motors, low high-speed torque with large inductance motors, poor performance under low voltage, and high motor heating under high voltage.

The new M series stepper drives use three digital filters which greatly improve anti-interference performance, and increase the precision and stability of machines.

Application and Position


The new M series includes seven models. DC input models include the M550/M860/M880A, and AC & DC input models include the MA550/MA86

Traditional stepper drives

New M series

Much smaller current ripple means lower motor heating (10 °C-20 °C lower)

Traditional stepper drives

New M series

Pure-sinusoidal current control technology means smoother movement (No creep phenomenon)

Part Number

M
A: AC&DC input
Blank: DC input
Blank: DC input
Blank: OC input

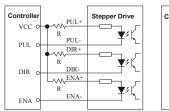
Selection Table							
Model	Models to be	Output	Supply	Size (mm)	Driving Motor	s Contro	ol Signal
Model	Replaced	Current (A)	Voltage (V)	Weight (g)	(NEMA Size)	PUL/DIR; CW/CCW	Single-ended; Differential
M550	M535, M542, ME542	1.2 to 5.0	20 to 45VDC	118*75.5*34 271	14, 17, 23	PUL/DIR; CW/CCW	Single-ended; Differential
M760	M840, M839, ME742	1.45 to 6.0	20 to 70VDC	118*75.5*34 280	14, 17, 23, 34	PUL/DIR; CW/CCW	Single-ended; Differential
M860 V5.0	M860	2.4 to 7.2	24 to 80VDC	151*97*48 570	17, 23, 34	PUL/DIR; CW/CCW	Single-ended; Differential
MA550	MA535B	1.0 to 5.0	18 to 33VAC	132*76*45 300	14, 17, 23	PUL/DIR; CW/CCW	Single-ended; Differential
M880A 📨	M860, M880, ME872	2.5 to 7.8	24 to 75VDC	151*97*48 565	23, 34, 42	PUL/DIR; CW/CCW	Single-ended; Differential
MA860	M860, M880, MD882	2.4 to 7.2	24 to 60VAC	151*97*48 570	23, 34	PUL/DIR; CW/CCW	Single-ended; Differential
MA860H		2.4 to 7.2	36 to 80VAC	151*97*52 590	34, 42	PUL/DIR; CW/CCW	Single-ended; Differential

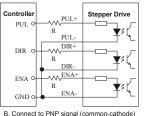
Operating Environment and Other Specifications					
Cooling	Natural cooling or forced cooling				
	Environment	Avoid dust, oil fog and corrosive gases			
Operating	Ambient Temperature	0 to +50 °C			
Environment	Humidity	40-90% RH			
	Vibration	5.9m/s ² MAX			
Storage Temperature		-20 to 125 °C			

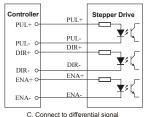
Tips

- 1. Working temperature for M series drives should below 70°C (158°F); and motor working temperature should below 80°C (176°F). Use automatic idle-current function to reduce drive and motor heating when a motor stops. Use forced cooling to cool the system if necessary.
- 2. To improve anti-interference performance of the system, use twisted pair shielded cable for control signals and correctly ground the system. To prevent noise coupling on pulse/direction signals, pulse/direction signal wires, motor wires and power wires should not be tied up together. Separate them by at least 10 centimeters (4 inches) to avoid disturbing signals generated by a stepper motor, which can easily disturb pulse and direction signals and cause motor position error, system instability and other failures.
- 3. Don't pull and plug motor or power wires while a stepper drive is powered ON, because there is high current flowing through motor coils (even stopped). Doing that would result in extremely high voltage surge, and could damage the drive.
- 4. If a power supply serves multiple drives, separately connecting the drives (each in a star arrangements) is recommended instead of daisy-chain arrangement. Contact Leadshine technical support for detail by phone at 86-755-2641-8447, by fax at 86-755-2640-2718, or by email at tech

Typical stepper System

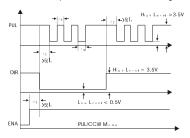

Control Signal Interface and Timing Chart

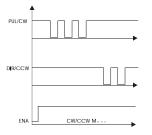

The M series drives can accept differential and single-ended inputs, including open-collector and PNP signals. The drives have 3 optically isolated logic inputs which are located on connector P1 to accept line driver control signals. The inputs are isolated to minimize or eliminate electrical noises coupling onto the driver control signals. Use line driver control signals to increase noise immunity of a drive in interference environments. In the following figures, connections to open-collector and PNP signals are illustrated. In order to avoid some fault operations and deviations, PUL, DIR and ENA should abide by the timing rules shown in the following timing diagram. Connections and timing diagram of control signals are shown in the following figures.


M542

22

Control signal connections





A. Connect to open-collector (common-anode)

Series connect resistors for current-limiting when +12V or +24V used. R=1K (>0.25W) if VCC=12V: R=2K (>0.25W) if VCC=24V. Make sure that the current through the opto-coupler is between 7 mA and 16 mA.

In order to avoid faults in operations, PUL, DIR and ENA signals should abide by the timing rules shown in this timing diagram

Notes:

- (a) t1: ENA must be ahead of DIR by at least 5 µ s. Usually, ENA+ and ENA- are NC (not connected), drive is enabled.
- (b) t2: DIR must be ahead of PUL's effective edge by 5 \mu s to ensure correct direction:
- (c) t3: High level width not less than 1.5 µ s (New M series);
- (d) t4: Low level width not less than 1.5 \(\mu \) s (New M series).

Problem Symptoms and Possible Ca	auses
Symptoms	Possible Causes
	No power
	No motion command signal
Motor is not rotating	DIP switch current or microstep resolution setting is wrong
moter to not rotating	Fault condition exists
	The drive is disabled
	Drive tailure
	Motor phases may be connected in reverse
Motor rotates in wrong direction	Direction control signal may be in reverse
	Opto—coupler for DIR in puts is broken
Date to to feel	Overvoltage protection
Drive is in fault	Over current protection
	Something wrong with motor coil
	Control signal is too weak or interfered
Erratic motor motion	Wrong motor connection
	Something wrong with motor coll
	Current setting is too s mall, losing steps
	Current setting is too small, not enough torque
Motor stalls during acceleration	Motor is undersized for the application
	Acceleration is set too high
	Power supply voltage too low
Excessive motor and drive heating	In a dequate the at sinking f cooling
Excessive motor and drive reating	Automatic current reduction function not being utilized
	Current is set too high

Supply voltage too high

M542

The M542 is a high performance microstepper drive based on pure-sinusoidal current control and self-adjustment (self-adjust current control parameters according to different motors) technologies. Driven motors can run with lower noise, lower heating, smoother movement and have better performance at higher speed than most drives on the market. It is suitable for driving 2-phase and 4-phase hybrid stepper motors from NEMA14 to NEMA34.

Suitable for a wide range of stepper motors from NEMA size 14 to NEMA34. Widely used in various kinds of machines, such as CNC routers, labelling machines, laser machines, X-Y tables, pick-place devices, and so on. Particularly suitable for the applications require low cost, low noise, low heating and high speed performance.

Function Description

Function	Description					
Microstep Setting	15 selectable microstep resolutions up to 256,00 steps/rev. Set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep on the fly.					

The first three bits (SW1, 2, 3) of the DIP switch are used to set the operating current, which is up to 4.2 A. Select a current setting closest to your motor's required current. Automatic Standstill SW4 is used for the automatic standstill current reduction function. When this function is active, the current will

automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will Current Reduction reduce motor heating to 36% (due to P=1^{2*}R) of the original value.

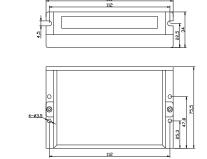
PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA-Control Signals are for the enable/disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.

A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse Motor Connector default motion direction.

Recommended to use power supplies with theoretical output of +20 VDC to +45 VDC, leaving room for power Power Connector fluctuation and back-EMF.

There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by re-powering it to make it function properly after removing problem(s).

Parameter Settings


Indicators

Unist: mm

This M542 uses an 8-bit DIP switch to set microstep resolution. and motor operating current, as shown below.

Mechanical Specifications 1inch =25.4mm

Operating Current Setting								
Peak Current	RMS Current	SW1	SW2	SW3				
1.00 A	0.71 A	о п	o n	оп				
1.46 A	1.04 A	o ff	оп	оп				
1.91 A	1.36 A	o n	o ff	оп				
2.37 A	1.69 A	11 0	11 0	0 11				
2.84 A	2.03 A	o n	0 0	11 0				
3.31 A	2.36 A	o ff	o n	o ff				
3.76 A	2.69 A	o n	0 [[0 11				
4.20 A	3.00 A	0 11	0 11	0 11				

Minusata	. Decel	O-441		
Microste	Resolu	tion Setti	ng	
Steps/rev.	SW5	SW6	SW7	SW8
400	0.11	o n	o n	o n
800	оп	11 0	o n	o n
1600	o ff	0.11	0 n	0 0
3200	0 11	0 n	0 11 0	o n
6400	11.0	оп	o ff	o n
12800	о п	o ff	0 ff	o n
25600	o ff	11.0	11 0	o n
1000	оп	o n	о п	0 11 0
2000	11 0	0 n	о п	0.11
4000	0.0	o ff	оп	o ff
5000	o ff	011	0 n	11.0
8000	0.11	0 n	11.0	110
10000	o ff	o n	o ff	o ff
20000	0.0	o ff	o ff	o ff
25000	o ff	0.11	11 0	11 0

M550 c713 us

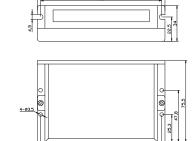
Introduction

The M550 is a high performance microstepper drive based on pure-sinusoidal current control and self-adjustment (self-adjust current control parameters according to different motors) technologies. Driven motors can run with lower noise, lower heating, smoother movement and have better performance at higher speed than most drives on the market. It is suitable for driving 2-phase and 4-phase hybrid stepper motors from NEMA14 to NEMA34.

Applications

Suitable for a wide range of stepper motors from NEMA size 14 to NEMA34. Widely used in various kinds of machines, such as CNC routers, labelling machines, laser machines, X-Y tables, pick-place devices, and so on. Particularly suitable for the applications require low cost, low noise, low heating and high speed performance.

Function Description							
Function	Description						
Microstep Setting	15 selectable microstep resolutions up to 256,00 steps/rev. Set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep on the fly.						
Current Setting	The first three bits (SW1, 2, 3) of the DIP switch are used to set the operating current, which is up to 5.0 A. Select a current setting closest to your motor's required current.						
Automatic Standstill Current Reduction	SW4 is used for the automatic standstill current reduction function. When this function is active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=l^{2*}R$) of the original value.						
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA- are for the enable/ disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.						
Motor Connector	A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.						
Power Connector	Recommended to use power supplies with theoretical output of $+20$ VDC to $+45$ VDC, leaving room for power fluctuation and back-EMF.						
Indicators	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will						


be free. Reset the drive by re-powering it to make it function properly after removing problem(s)

Parameter Settings

This M550 uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below.

Mechanic	cal Specifications
Units: mm	1inch = 25.4mm

Operating Current Setting							
Peak Current	RMS Current	SW1	SW2	SW3			
1.20 A	0.84 A	0 n	o n	o n			
1.74 A	1.24 A	0 11 0	o n	o n			
2.27 A	1.62 A	o n	o ff	o n			
2.82 A	1.99 A	11 0	110	o n			
3.42 A	2.42 A	o n	o n	11.0			
3.94 A	2.81 A	11 0	o n	11 0			
4.47 A	3.20 A	0 n	o ff	off			
5.0 A	3.57 A	o ff	o ff	o ff			

Microste	p Resolut	tion Settin	g	
Steps/rev.	SW5	SW6	SW7	SW8
400	o ff	o n	оп	o n
800	0 11	off	оп	o n
1600	11.0	011	оп	o n
3200	оп	o n	11 0	o n
6400	o f f	o n	0.11	o n
12800	o n	off	o ff	9 n
25600	11.0	110	11 0	о п
1000	о п	o n	0 11	110
2000	o f f	0 n	0 n	011
4000	0 n	off	о п	o ff
5000	0 11 0	o f f	о п	o ff
8000	оп	o n	0 ff	110
10000	o ff	o n	11 0	110
20000	o n	off	o ff	off
25000	11 0	o f f	o ff	off

M760 : 744 us

ntroduction

The M760 is a high performance microstepper drive based on pure-sinusoidal current control and self-adjustment (self-adjust current control parameters according to different motors) technologies. Driven motors can run with lower noise, lower heating, smoother movement and have better performance at higher speed than most drives on the market. It is suitable for driving 2-phase and 4-phase hybrid stepper motors from NEMA14 to NEMA34.

Applications

Suitable for a wide range of stepper motors from NEMA14 to NEMA34. Widely used in various kinds of machines, such as CNC routers, labelling machines, laser machines, X-Y tables, pick-place devices, and so on. Particularly suitable for the applications require low cost, low noise, low heating and high speed performance.

Function Description

Function	Description
Microstep Setting	16 selectable microstep resolutions up to $512,00$ steps/rev. Set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep on the fly.
	The first three bits (SW1, 2, 3) of the DIP switch are used to set the operating current, which is up to 6.0A. Select a current setting closest to your motor's required current.

SW4 is used for the automatic standstill current reduction function. When this function is active, the current will Automatic Standstill automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will Current Reduction reduce motor heating to 36% (due to $P=I^{2}*R$) of the original value.

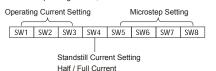
PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENAare for the enable/disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.

A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse

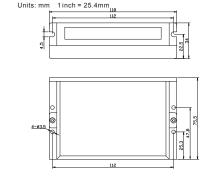
Motor Connector default motion direction.

Recommended to use power supplies with theoretical output of +20 VDC to +68VDC, leaving room for power

Power Connector fluctuation and back-EMF.


There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is

powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by re-powering it to make it function properly after removing problem(s).


Parameter Settings

Indicators

This M760 uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below.

Mechanical Specifications

Operating Current Setting							
Peak Current	RMS Current	SW1	SW2	SW3			
1.45 A	1.03 A	о п	o n	οп			
2.08 A	1.47 A	o ff	o n	оп			
2.72 A	1.93 A	o n	11 0	0 n			
3.37 A	2.38 A	11 0	11.0	o n			
4.05 A	2.86 A	o n	o n	o ff			
4.72 A	3.34 A	o ff	o n	o ff			
5.35 A	3.79 A	o n	11 0	11 0			
6.0 A	4.24 A	o ff	0.11	0.11			

Microste	p Resolut	ion Settin	g	
Steps/rev.	SW5	SW6	SW7	SW8
400	o n	o n	o n	0 11
800	11 0	o n	o n	о п
1600	о п	o ff	o n	оп
3200	o ff	o ff	o n	оп
6400	0 n	o n	o ff	0 11
12800	0 ff	o n	o ff	о п
25600	0 n	0 ff	o ff	0.1
51200	o ff	o ff	o ff	оп
1000	o n	о п	o n	11.0
2000	0 11	0.0	o n	o ff
4000	о п	11 0	0 B	0.11
5000	o ff	o ff	0 11	o ff
8000	o n	o n	o ff	o ff
10000	0 11 0	0 ft	o ff	0 11
20000	o n	11 0	o ff	o f f
40000	0 11 0	off	o ff	o ff

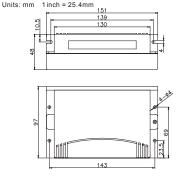
M860 c 744 us

Introduction

The M860 is a high performance microstepper drive based on pure-sinusoidal current control and self-adjustment (self-adjust current control parameters according to different motors) technologies. Driven motors can run with lower noise, lower heating, smoother movement and have better performance at higher speed than most drives on the market. It is suitable for driving 2-phase and 4-phase hybrid stepper motors from NEMA23 to NEMA42.

Applications

Suitable for a wide range of stepper motors from NEMA23 to NEMA42. Widely used in various kinds of machines, such as CNC routers, cutting machines, packing devices, pick-place devices, and so on. Particularly suitable for the applications require low noise and high speed performance.


Function Desc	ription
Function	Description
Microstep Setting	16 selectable microstep resolutions up to 512,00 steps/rev. Set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep on the fly.
Current Setting	The first three bits (SW1, 2, 3) of the DIP switch are used to set the operating current, which is up to 7.2 A Select a setting closest to your motor's required current.
Automatic Standstill Current Reduction	SW4 is used for the automatic standstill current reduction function. When this function is active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=1^2*R$) of the original value.
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA are for the enable/disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.
Motor Connector	A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.
Power Connector	Recommended to use power supplies with theoretical output of +24 VDC to +68 VDC, leaving room for powe fluctuation and back-EMF.
Indicators	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by re-powering it to make it function properly after removing problem(s).

Parameter Settings

This M860 uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below.

Operating Current Setting			_	Microste	ep Setti	ng		
	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
Standstill Current Setting								
Half / Full Cur				ull Curr	ent			

Mechanical Specifications

Operating Current Setting							
Peak Current	RMS Current	SW1	SW2	SW3			
2.40 A	1.70 A	o n	0 n	0 n			
3.08 A	2.18 A	o ff	o n	o n			
3.77 A	2.67 A	o n	off	o n			
4.45 A	3.15 A	0.11.0	11 0	o n			
5.14 A	3.63 A	o n	o n	0.11			
5.83 A	4.12 A	o ff	o n	off			
6.52 A	4.61 A	оп	off	o ff			
7 20 A	5.00 A	11.0	0.11	0.11			

Microste	p Resolu	tion Settin	ıg	
Steps/rev.	SW5	SW6	SW7	SW8
400	о п	o n	о п	o n
800	11.0	o n	o n	o n
1600	0 n	11.0	0 n	o n
3200	o ff	a ff	оп	o n
6400	о п	o n	o ff	o n
12800	11.0	o n	11.0	o n
25600	0 n	11.0	11.0	o n
51200	o ff	o ff	o ff	o n
1000	o n	o n	о п	0.11
2000	0.11	o n	0 n	0 11
4000	0 N	off	o n	0 11 0
5000	o ff	off	οп	0 11 0
8000	оп	o n	o ff	o ff
10000	0 11 0	o n	11 0	off
20000	0 N	11.0	11 0	11 0
40000	11 0	110	11 0	11 0

M880A 274 us

Introduction

The M880A is a high performance microstepper drive based on pure-sinusoidal current control and self-adjustment (self-adjust current control parameters according to different motors) technologies. Driven motors can run with lower noise, lower heating, smoother movement and have better performance at higher speed than most drives on the market. It is suitable for driving 2-phase and 4-phase hybrid stepper motors from NEMA23 to NEMA42.

Applications

Suitable for a wide range of stepper motors from NEMA23 to NEMA42. Widely used in various kinds of machines, such as CNC routers, cutting machines, electronic manufacturing, packing, pick-place devices, and so on. Particularly suitable for the applications require low cost, low noise and high speed performance.

Function Desc	ription
Function	Description
Microstep Setting	16 selectable microstep resolutions up to 512,00 steps/rev. Set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep on the fly.
Current Setting	The first three bits (SW1, 2, 3) of the DIP switch are used to set the operating current, which is up to 7.8 A. Select a setting closest to your motor's required current.
Automatic Standstill Current Reduction	SW4 is used for the automatic standstill current reduction function. When this function i active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to P=1 ^{2*} R) of the original value.
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA- are for the enable/ disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.
	A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse

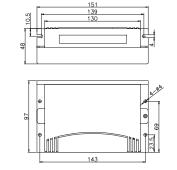
Motor Connector

A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.

Power Connector Recommended to use power supplies with theoretical output of +24 VDC to +68 VDC, leaving room for power fluctuation and back-EMF.

There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by re-powering it to make it function properly after removing problem(s).

Parameter Settings


Indicators

This M880A uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below.

Mechanical Specifications

Unist: mm 1inch = 25.4mm

Operating Current Setting						
Peak Current	RMS Current	SW1	SW2	SW3		
2.80A	2.00 A	o n	o n	о п		
3.50A	2.50 A	off	o n	оп		
4.20A	3.00 A	o n	o ff	0 11		
4.90A	3.50 A	110	0.11	0 11		
5.70A	4.07 A	o n	o n	o ff		
6.40A	4.57 A	off	o n	off		
7.00A	5.00 A	0 n	o ff	11.0		
7.80A	5.57 A	110	11 0	0 11		

Microste	Microstep Resolution Setting						
Steps/rev.	SW5	SW6	SW7	SW8			
400	o n	o n	o n	o n			
800	0.11	оп	o n	оп			
1600	o n	o ff	o n	о п			
3200	o ff	o ff	o n	оп			
6400	o n	оп	off	оп			
12800	0 11	0.0	110	0.1			
25600	o n	11.0	11.0	0.1			
51200	o ff	o ff	off	оп			
1000	o n	о п	o n	11.0			
2000	0 11 0	0 11	0 11	0 11			
4000	o n	0 11 0	o n	011			
5000	o ff	o ff	o n	o ff			
8000	o n	оп	off	off			
10000	110	0.0	110	11.0			
20000	o n	11 0	110	110			
40000	o f f	o ff	011	0 11 0			
.5500							

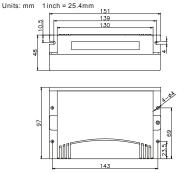
MA860

Introduction

The MA860 is a high performance microstepper drive based on pure-sinusoidal current control and self-adjustment (self-adjust current control parameters according to different motors) technologies. Driven motors can run with lower noise, lower heating, smoother movement and have better performance at higher speed than most drives on the market. It is suitable for driving 2-phase and 4-phase hybrid stepper motors from NEMA23 to NEMA42.

Applications

Suitable for a wide range of stepper motors from NEMA23 to NEMA42. Widely used in various kinds of machines, such as CNC routers, cutting machines, packing devices, pick-place devices, and so on. Particularly suitable for the applications require low cost, low noise, low heating and high speed performance.


Function Desc	ription
Function	Description
Microstep Setting	16 selectable microstep resolutions up to 512,00 steps/rev. Set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep on the fly.
Current Setting	The first three bits (SW1, 2, 3) of the DIP switch are used to set the operating current, which is up to 7.2 A. Select a setting closest to your motor's required current.
Automatic Standstill Current Reduction	SW4 is used for the automatic standstill current reduction function. When this function is active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to P=i*R) of the original value.
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA- are for the enable/ disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.
Motor Connector	A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.
Power Connector	Recommended to use power supplies $$ with theoretical output of 18 to 50VAC or +20 to 68VDC, leaving room for power fluctuation and back-EMF.
Indicators	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by repowering it to make it function properly after removing problem(s).

Parameter Settings

This MA860 uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below.

				ions

Operating Current Setting						
Peak Current	M860 REF Current	SW1	SW2	SW3		
2.40 A	2.00 A	o n	o n	o n		
3.08 A	2.57 A	o ff	o n	o n		
3.77 A	3.14 A	o n	110	o n		
4.45 A	3.71 A	11 0	11 0	o n		
5.14 A	4.28 A	оп	o n	o ff		
5.83 A	4.86 A	o ff	o n	o ff		
6.52 A	5.43 A	o n	110	11 0		
7.20 A	6.00 A	11.0	110	11.0		

Microste	p Resolu	tion Settir	ıg	
Steps/rev.	SW5	SW6	SW7	SW8
400	0 n	o n	o n	0 n
800	o ff	o n	оп	o n
1600	оп	off	оп	o n
3200	11 o	110	o n	o n
6400	o n	o n	11 0	o n
12800	0.11	o n	11 0	0 N
25600	о п	off	o ff	0 n
51200	o ff	o ff	0 11	o n
1000	0 0	o n	o n	11.0
2000	o ff	o n	о п	o ff
4000	o n	off	оп	o ff
5000	11 0	0110	o n	110
8000	o n	o n	11 0	110
10000	11 0	o n	11 0	110
20000	o n	off	11 0	off
40000	o ff	0 11 0	0 11 0	0 []

MA860H

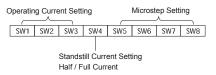
Introduction

The MA860H is a high performance microstepper drive based on pure-sinusoidal current control and self-adjustment (self-adjust current control parameters according to different motors) technologies. Driven motors can run with lower noise, lower heating, smoother movement and have better performance at higher speed than most drives on the market. It is suitable for driving 2-phase and 4-phase hybrid stepper motors from NEMA34 to NEMA42.

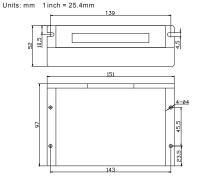
Applications

Suitable for a wide range of stepper motors from NEMA34 to NEMA42. Widely used in various kinds of machines, such as CNC routers, cutting machines, packing devices, pick-place devices, and so on. Particularly suitable for the applications require low noise, low heating and high speed performance.

Function Desc	ription
Function	Description
Microstep Setting	16 selectable microstep resolutions up to $512,00$ steps/rev. Set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep on the fly.
Current Setting	The first three bits (SW1, 2, 3) of the DIP switch are used to set the operating current, which is up to 7.2 A. Select a setting closest to your motor's required current.
Automatic Standstill Current Reduction	SW4 is used for the automatic standstill current reduction function. When this function is active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P= ^{4\%}R$) of the original value.
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA- are for the enable/ disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.
Motor Connector	A+, $A-$ and $B+$, $B-$ are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.
Power Connector	Recommended to use power supplies with theoretical output of 24 to 80VAC or + 36 to 112VDC, leaving room for power fluctuation and back-EMF.
	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is


be free. Reset the drive by repowering it to make it function properly after removing problem(s).

powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will


Parameter Settings

Indicators

This MA860H uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below.

Mech	ıanical	S	pecificati	ons

Operating Current Setting						
Peak Current	M860 REF Current	SW1	SW2	SW3		
2.40 A	2.00 A	0 n	o n	0.1		
3.08 A	2.57 A	110	o n	оп		
3.77 A	3.14 A	0.1	o ff	оп		
4.45 A	3.71 A	0 f f	o ff	оп		
5.14 A	4.28 A	0 n	o n	11 0		
5.83 A	4.86 A	110	o n	11 0		
6.52 A	5.43 A	0.1	o ff	0.11		
7.20 A	6.00 A	off	o ff	o ff		

Microste	Microstep Resolution Setting								
Steps/rev.	SW5	SW6	SW7	SW8					
400	0 n	o n	o n	o n					
800	110	o n	o n	o n					
1600	о п	11.0	о п	o n					
3200	o ff	o ff	оп	o n					
6400	о п	о п	110	o n					
12800	110	0 n	110	0 n					
25600	0 n	11 0	110	o n					
51200	o ff	o ff	off	o n					
1000	o n	o n	o n	11.0					
2000	011	0 n	o n	o ff					
4000	о п	off	o n	off					
5000	o ff	o ff	o n	off					
8000	оп	o n	off	o ff					
10000	110	0 11	110	0 11 0					
20000	o n	0 ff	110	0.11					
40000	o f f	o ff	off	off					

Stepper Motor Basic

A stepper motor is an electromechanical device which converts electrical pulses into discrete mechanical movements. The shaft or spindle of a stepper motor rotates in discrete step increments when electrical command pulses are applied to it in a proper sequence. The motor rotation has several direct relationships to these applied input pulses. The sequence of the applied pulses is directly related to the direction of motor shafts rotation. The speed of the motor shafts rotation is directly related to the frequency of the input pulses and the length of rotation is directly related to the number of input pulses applied.

A stepper motor can be a good choice whenever controlled movement is required. They can be used in applications where you need to control rotation angle, speed, position and synchronism. Because of the inherent advantages, stepper motors have found their places in many different applications, such as CNC routers, laser machines, and so on.

The length of rotation is directly related to the number of input pulses applied.

Stepper Motor Types

There are three basic stepper motor types. They are variable-reluctance, permanent-magnet and hybrid.

This type of motor consists of a soft iron multi-toothed rotor and a wound stator. When the stator windings are energized with DC current the poles become magnetized. Rotation occurs when the rotor teeth are attracted to the energized stator poles.

Often referred to as a "tin can" or "canstock" motor, the permanent magnet step motor is a low cost and low resolution type motor. PM motors as the name implies have permanent magnets added to the motor structure. The magnetized rotor poles provide an increased magnetic flux intensity and because of this the PM motor exhibits improved torque characteristics when compared with the VR type.

The hybrid stepper motor provides better performance with respect to step resolution, torque and speed. The hybrid stepper motor combines the best features of both the PM and VR type stepper motors. The rotor is multi-toothed like the VR motor and contains an axially magnetized concentric magnet around its shaft. This further increases the detent, holding and dynamic torque characteristics of the motor when compared with both the VR and PM types. Generally speaking, the hybrid motor may be the better choice along with reducing cost, for it offers better performance with respect to step resolution, torque and speed.

Normal Selection Steps

You can follow the following steps to choose a stepper motor.

1. Determining the Drive Mechanism Component

Determine the mechanism and required specifications. First, determine certain features of the design, such as mechanism, rough dimensions, distances moved, and positioning period.

2 Calculate the Required Resolution

Find the resolution the motor requires. From the required resolution, determine whether a motor only or a geared motor is to be used. The resolution and positioning accuracy of a stepper motor system is affected by several factors - the stepper angle, the selected drive mode (full-step, half-step or microstepper), and the gear rate.

3. Determine the Operating Pattern

Determine the operating pattern that fulfills the required specifications. Find the acceleration (deceleration) period and operating pulse speed in order to calculate the acceleration torque.

4. Calculate the Required Torque

Calculate the load torque and acceleration torque and find the required torque demanded by the motor.

5 Select the Motor

Make a provisional selection of a motor based on required torque. Determine the motor to be used from the speed-torque characteristics.

6. Check the Selected Motor

Confirm the acceleration/deceleration rate and inertia ratio

Motor Connections

The M series drives can drive any 2-phase, 4-phase hybrid stepper motors, including 4-lead, 6-lead and 8-lead motors. Step angle of the motors can be 1.8 or 0.9 degree. For 6-lead and 8-lead stepper motors, different connections have different performance shown in the following figures.

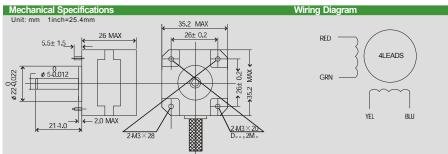
Soloction Table

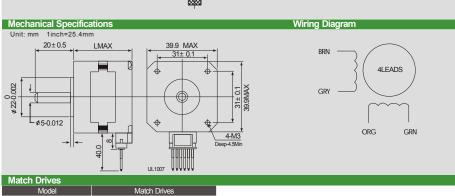
Leadshine's Stepper Motors

Leadshine offers 2-phase and 3-phase stepper motors from NEMA14 to NEMA51. Made of high quality cold roll sheet copper and anti-high temperature permanent magnet, these stepper motors are highly reliable and generate low motor heating. Because of their nice internal damping characteristics, those stepper motors can run very smoothly and have no obvious resonance area within the whole speed ranges.

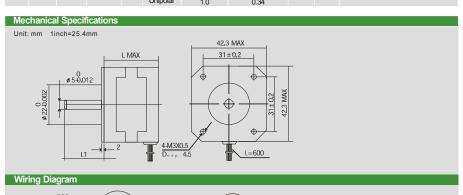
Sele	Selection Table									
Phase	NEMA Size	Model	Step Angle (°)	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives
	14	35HS01	1.8	4	-	0.4	0.07	26	0.15	DM320C/DM422C/DM442/M415I
	16	39HS02	1.8	4	-	0.6	0.22	34	0.2	DM320C/DM422C/DM442/M415I
		42HS02	1.8	4	-	0.4	0.22	40	0.24	DM320C/DM422C/DM442/M415I
	17				Parallel	1.4	0.47			
	17	42HS03	1.8	8	Series	0.7	0.47	48	0.34	DM320C/DM422C/DM442/M415
					Unipolar	1.0	0.34			
		57HS04	1.8	6	Series	2.0	0.4	41	0.45	DM442/DM556/M550
					Unipolar	2.8	0.28			
					Parallel	4.2	1.3			
		57HS09	1.8	8	Series	2.1	1.3	54	0.6	DM442/DM556/M550/M760
					Unipolar	2.8	0.9			
	23				Parallel	4.0	1.8			
		57HS13	1.8	8	Series	2.0	1.8	76	1.0	DM442/DM556/M550/M760
					Unipolar	2.8	1.3			
2					Parallel	5.6	2.2			DM442/DM556/M550/M760
2		57HS22	1.8	8	Series	2.8	2.2	81	1.15	
					Unipolar	4.0	1.5			
					Parallel	4.0	3.5			DM870/M760/M860/M880A
		86HS35	1.8	8	Series	2.0	3.5	65	1.7	
					Unipolar	2.8	2.5			
					Parallel	6.0	4.5			
	34	86HS45	1.8	8	Series	3.0	4.5	80	2.3	DM870/DM1182/M860/M880A
					Unipolar	4.2	3.2			
					Parallel	6.8	8.5			
		86HS85	1.8	8	Series	3.4	8.5	118	3.8	DM870/DM1182/M880A/ND228
					Unipolar	4.9	6.0			
	40	110HS12	1.8	4	-	5.0	12	99	5.0	DM1182/ND2282
	42	110HS20	1.8	4	-	6.5	20	150	8.4	DM1182/ND2282
		130HS27		4	-	6.0	27	227	13	DM1182/ND2282
	51	130HS45	1.8	4	-	7.0	45	283	19	DM1182/ND2282
		573S05	1.2	6	Delta	5.2	0.45	42	0.45	3DM683/3DM883
	23	573S09	1.2	6	Delta	3.5	0.9	50	0.75	3DM683/3DM883
		573S15	1.2	6	Delta	5.8	1.3	76	1.1	3DM683/3DM883
3		863S22	1.2	6	Delta	5.0	2.3	71	1.7	3DM683/3DM883
	34	863S42	1.2	6	Delta	5.0	4.3	103	2.9	3DM683/3DM883
	0.	863S68H		6	Delta	2.3	6.8	135	4.0	3DM683/3DM883/3ND2283
		000000	1.2	U	20.00	2.5	0.0	133	4.0	JEWIOOJ/JEIVIOOJ/JINDZZOJ

35HSxx / 39HSxx




35HSxx/39HSxx Series

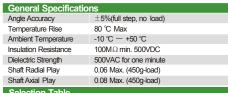
Sele	ction T	able								
Phase	NEMA Size	Model	Step Angle	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives
2	14	35HS01	1.8	4	-	0.4	0.07	26	0.15	DM320C/DM422C/DM442/M415B
2	16	39HS02	1.8	4	-	0.6	0.22	34	0.20	DM320C/DM422C/DM442/M415B


M415B/DM320C/DM422C

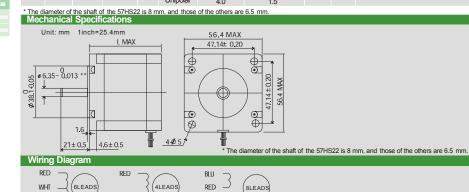
42HSxx Series

ons
± 5%(full step, no load)
80 ℃ Max
-10 °C− +50 °C
100MΩ min. 500VDC
500VAC for one minute
0.06 Max. (450g-load)
0.08 Max. (450g-load)

Sele	ction T	able									
Phase	NEMA Size	Model	Step Angle	# of Leads		Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives	
		42HS02	1.8	4	-	0.4	0.22	40	0.24	DM320C/DM422C/DM442/M415B	
2	17					Parallel	1.4	0.47			
2	17	42HS03	1.8	1.8 8	Series	0.7	0.47	48 0	0.34	DM320C/DM422C/DM442/M415B	
					Unipolar	1.0	0.34				



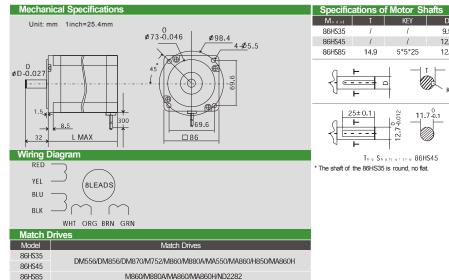
Match Drives
Model Match Drives
42HS _{xx} DM320/DM422C/DM432C/M415B

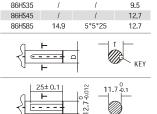


57HSxx Series

Sele	ction T	able	_							
Phase	NEMA Size	Model	Step Angle	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives
		57HS04	1.8	6	Series	2.0	0.4	41	0.45	DM442/DM556/M550
					Unipolar	2.8	0.28			
					Parallel	4.2	1.3			
		57HS09	1.8	8	Series	2.1	1.3	54	0.6	DM442/DM556/M550/M760
					Unipolar	2.8	0.9			
2	23				Parallel	4.0	1.8			
		57HS13	1.8	1.8 8	Series	2.0	1.8	76	1.0	DM442/DM556/M550/M760
					Unipolar	2.8	1.3			
				8	Parallel	5.6	2.2			DM442/DM556/M550/M760
		57HS22*	1.8		Series	2.8	2.2	81	1.15	
					Unipolar	40	1.5			

Viring Diagram			
RED \	RED _	BLU)	
WHT (6LEADS)	(4LEADS)	RED (8LEADS)	
GRN J	GRN J	YEL 7	
		GRN O	
YEL BLK BLU	YEL BLU	BRN BLK ORG WHT	


	Match D	rives		
ĺ	Model	Match Drives	Model	Match Drives
	57HS04	DM422C/DM432C/DM556/M752/M542/M860/MA550	57HS13	DM556/DM856/M752/M542/M860/M880A
	57HS09	DIVI422C/DIVI432C/DIVI330/WI732/WI342/WI660/WIA330	57HS22	DIVISSO/DIVISSO/IVI7S2/IVIS42/IVISOO/IVISOOA

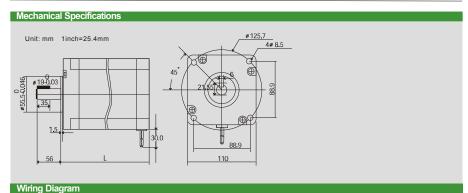

86HSxx Series

General Specification	ns
Angle Accuracy	\pm 5%(full step, no load)
Temperature Rise	80 °C Max
Ambient Temperature	-10 ℃— +50 ℃
Insulation Resistance	100MΩ min. 500VDC
Dielectric Strength	500VAC for one minute
Shaft Radial Play	0.06 Max. (450g-load)
Shaft Axial Play	0.08 Max. (450g-load)

Selection Table										
Phase	NEMA Size	Model	Step Angle	# of Leads		Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives
					Parallel	4.0	3.5			
		86HS35	1.8	8	Series	2.0	3.5	65	1.7	DM870/M760/M860/M880A
					Unipolar	2.8	2.5			
					Parallel	6.0	4.5			
2	34	86HS45	1.8	8	Series	3.0	4.5	80	2.3	DM870/DM1182/M860/M880A
					Unipolar	4.2	3.2			
					Parallel	6.8	8.5			
		86HS85	1.8	.8 8	Series	3.4	8.5	118	118 3.8	DM870/DM1182/M880A/ND2282
					Unipolar	4.9	6.0			

KEY D

The Shaft of the 86HS45 * The shaft of the 86HS35 is round, no flat.

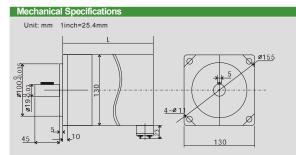


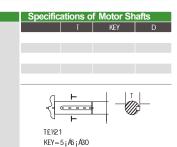
110HSxx Series

General Specification	ons
Angle Accuracy	±5%(full step, no load)
Temperature Rise	80 °C Max
Ambient Temperature	-10 °C — +50 °C
Insulation Resistance	100M Ω min. 500VDC
Dielectric Strength	500VAC for one minute
Shaft Radial Play	0.06 Max. (450g-load)
Shaft Axial Play	0.08 Max. (450g-load)

Selec	ction T	able								
Phase	NEMA Size	Model	Step Angle (°)	# of Leads		Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives
2		110HS12	1.8	4	-	6.0	12	115	6.0	ND2282/DM1182
2	42	110HS20	1.8	4	-	6.0	20	150	8.4	ND2282/DM1182
		110000	10	4		G E	20	201	117	NID2202/DM44402

GRN YEL BLU

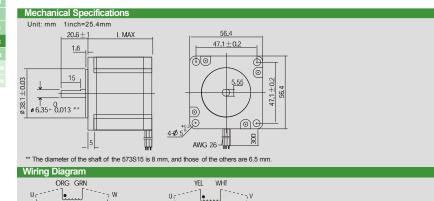

Match Drives	
Model	Match Drives
110HS12	
110HS20	ND2282/DM1182
110HS28	


130HSxx Series

General Specification	ns
Angle Accuracy	±5%(full step, no load)
Temperature Rise	80 °C Max
Ambient Temperature	-10 °C — +50 °C
Insulation Resistance	100M Ω min. 500VDC
Dielectric Strength	500VAC for one minute
Shaft Radial Play	0.06 Max. (450g-load)
Shaft Axial Play	0.08 Max. (450g-load)

Sele	Selection Table									
Phase	NEMA Size	Model	Step Angle	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives
	51	130HS27	1.8	4	-	6.0	27	227	13	ND2282/DM1182
2		130HS33	1.8	4	-	6.0	33	227	13	ND2282/DM1182
2	31	130HS40	1.8	4	-	7.0	40	283	16	ND2282/DM1182
		130HS45	1.8	4	-	7.0	45	283	19	ND2282/DM1182

57HSxx
86HSxx
110HSxx
130HSxx
573Sxx
863Sxx
ST curves

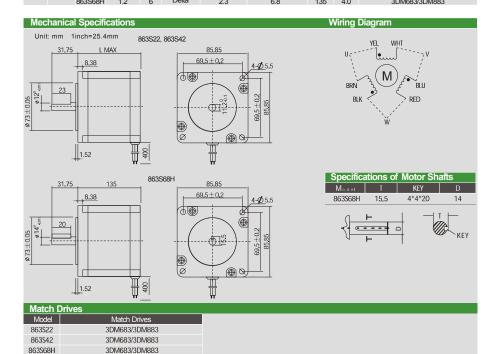

573Sxx Series

General Specifications							
Angle Accuracy	±5%(full step, no load)						
Temperature Rise	80 °C Max						
Ambient Temperature	-10 °C — +50 °C						
Insulation Resistance	100MΩ min. 500VDC						
Dielectric Strength	500VAC for one minute						
Shaft Radial Play	0.06 Max. (450g-load)						
Shaft Axial Play	0.08 Max. (450g-load)						

Sele	ction T	able								
Phase	NEMA Size	Model	Step Angle	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives
		573S05	1.2	6	Delta	5.2	0.45	42	0.45	3DM683/3DM883
3	23	573S09	1.2	6	Delta	3.5	0.9	50	0.75	3DM683/3DM883
		E7201E	1.2	6	Delta	EO	12	76	11	3DM 4603/3DM 4003

^{*} The diameter of the shaft of the 573S15 is 8 mm, and those of the others are 6.5 mm.

RED WHT 573\$05	BRN BLU BLK RED 573S09 573S15
Match Drives	

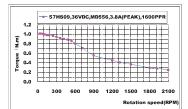

IVIALCITE	NIVG3
Model	Match Drives
573S05	3DM683/3DM883
573\$09	3DM683/3DM883
573S15	3DM683/3DM883

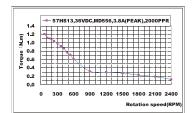
863Sxx Series

General Specifications								
Angle Accuracy	±5%(full step, no load)							
Temperature Rise	80 °C Max							
Ambient Temperature	-10 ℃ —+50 ℃							
Insulation Resistance	100M Ωmin. 500VDC							
Dielectric Strength	500VAC for one minute							
Shaft Radial Play	0.06 Max. (450g-load)							
Shaft Axial Play	0.08 Max. (450g-load)							

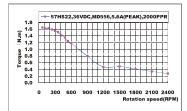
Sele	Selection Table									
Phase	NEMA Size	Model	Step Angle (°)	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives
		863S22	1.2	6	Delta	5.0	2.3	71	1.7	3DM683/3DM883
3	23	863S42	1.2	6	Delta	5.0	4.3	103	2.9	3DM683/3DM883
		00000011	4.0	_	Dolta	0.0	0.0	405	4.0	2DM 4C02/2DM 4002

 $_{39}$

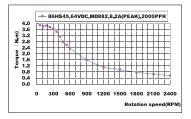

35HSxx 39HSxx 42HSxx 57HSxx 86HSxx 110HSxx 573Sxx 863Sxx ST curves


Speed-Torque Curves of 2-phase Stepper Motors

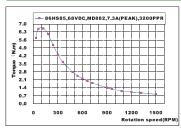
57HS09


Stepper Motor: 57HS09 Output Current: 3.8 A(Peak)
Stepper Drive: MD556 Microstep: 1600 PPR
Input Voltage: 36 VDC Connection: Parallel

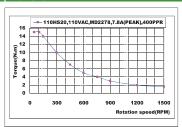
57HS13


Stepper Motor: 57HS13 Output Current: 3.8 A(Peak)
Stepper Drive: MD556 Microstep: 2000 PPR
Input Voltage: 36 VDC Connection: Parallel

57HS22

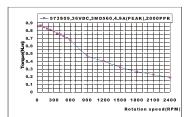

Stepper Motor: 57HS22 Output Current: 5.6 A(Peak)
Stepper Drive: MD556 Microstep: 2000 PPR
Input Voltage: 36 VDC Connection: Parallel

86HS4

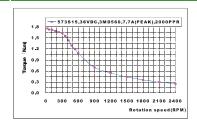

Stepper Motor: 86HS45 Output Current: 8.2 A(Peak)
Stepper Drive: MD882 Microstep: 2000 PPR
Input Voltage: 64 VDC Connection: Parallel

86HS85

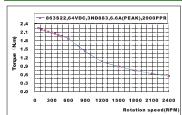
Stepper Motor: 86HS85 Output Current: 7.3 A (Peak)
Stepper Drive: MD882 Microstep: 3200 PPR
Input Voltage: 68 VDC Connection: Parallel


10HS20

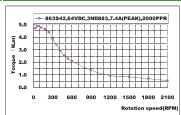
Stepper Motor: 110HS20 Output Current: 7.8 A (Peak)
Stepper Drive: MD2278 Microstep: 400 PPR
Input Voltage: 110 VAC Connection: Parallel


Speed-Torque Curves of 3-phase Stepper Motors

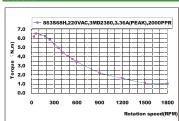
573S09


Stepper Motor: 573S09 Output Current: 4.9 A(Peak)
Stepper Drive: 3MD560 Microstep: 2000 PPR
Input Voltage: 36 VDC Connection: Delta

573S15


Stepper Motor: 573S15 Output Current: 7.7 A(Peak)
Stepper Drive: 3MD560 Microstep: 2000 PPR
Input Voltage: 36 VDC Connection: Delta

863S22


Stepper Motor: 863S22 Output Current: 6.6 A(Peak)
Stepper Drive: 3ND883 Microstep: 2000 PPR
Input Voltage: 64 VDC Connection: Delta

863542

Stepper Motor: 863S42 Stepper Drive: 3ND883 Input Voltage: 64 VDC Output Current: 7.4 A(Peak) Microstep: 2000 PPR Connection: Delta

863S68H

Stepper Motor: 863S68H Output Current: 3.36 A(Peak)
Stepper Drive: 3MD2380 Microstep: 2000 PPR
Input Voltage: 220 VAC Connection: Delta

ST curves